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a b s t r a c t

In the present study, the geometrically non-linear vibrations of thin infinitely long rectangular plates
subjected to axial flow and concentrated harmonic excitation are investigated for different flow
velocities. The plate is assumed to be periodically simply supported with immovable edges and the
flow channel is bounded by a rigid wall. The equations of motion are obtained based on the von Karman
non-linear plate theory retaining in-plane inertia and geometric imperfections by employing Lagrangian
approach. The fluid is modeled by potential flow and the flow perturbation potential is derived by
applying the Galerkin technique. A code based on the pseudo-arc-length continuation and collocation
scheme is used for bifurcation analysis. Results are shown through bifurcation diagrams of the static
solutions, frequency-response curves, time histories, and phase-plane diagrams. The effect of system
parameters, such as flow velocity and geometric imperfections, on the stability of the plate and its
geometrically non-linear vibration response to harmonic excitation are fully discussed and the
convergence of the solutions is verified.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Flow-induced vibrations of plates are a major problem in many
engineering applications including aerospace, aeronautics, auto-
motive, nuclear and naval industries. In these challenging applica-
tions, in order to accurately predict the non-linear response of the
plate, it is of significant importance to consider numerical models
that take into account (i) non-linear effects such as large structural
deflections, and (ii) fluid–structure interactions.

The state of art research on geometrically non-linear vibrations
of plates can be found in the book by Amabili [1]. In a series of
papers, Amabili [2–5] profoundly investigated non-linear vibra-
tions of thin isotropic rectangular plates. In particular, large
amplitude vibrations of plates with different boundary conditions
based on a Lagrangian approach were studied in Ref. [2] by using
an arc-length continuation technique. Theory and experiments for
thin plates with non-conventional boundary conditions and geo-
metric imperfections were presented in Ref. [3]. The effect of
temperature variations on non-linear vibrations of plates with
clamped edges was investigated in Ref. [4], and the effect of
concentrated masses on the large amplitude response of rectan-
gular plates was presented in Ref. [5]. Moreover, the experimental

results for non-linear vibrations of fully clamped rectangular
plates with concentrated masses were presented by Amabili and
Carra [6], and the theoretical and experimental results for large
amplitude vibrations of completely free imperfect rectangular
plates were given in Ref. [7]. Finite Element methods (FEM) have
also been extensively used for studying large-amplitude vibrations
of rectangular plates. For instance, Ribeiro and Petyt [8–10] used
the hierarchical finite element method (HFEM) to investigate large
amplitude vibrations of fully clamped plates with [8] and without
internal resonance [9,10]. Ribeiro [11] used the same approach to
study the non-linear forced response of simply supported plates
with immovable edges. Touzé et al. [12] studied the transition to
chaos in non-linear vibration of rectangular plates.

The literature related to linear vibrations of plates coupled to
fluid is quite extensive (see e.g. [13–17]). In particular, the majority
of the approximate analytical methods that are used to study flow-
induced vibrations are based on the assumption attributed to Ref.
[13] that the vibration modes of the structure in contact with still
fluid (wet modes) are the same as those in vacuo (dry modes). In
fact, it is based on this assumption that the so-called non-
dimensional added virtual mass incremental factors (NAVMI) can
be used to estimate the natural frequencies of the plate in still fluid
from the natural frequencies in vacuo as shown by Kwak and Kim
[14] and Kwak [15]. The linear hydroelastic theory including
dry and wet analyses has also been used by Fu and Price [16] to
study vibrations of a cantilevered plate partially and completely
immersed in fluid. In the dry analysis, the dynamic characteristics
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of the cantilevered plate were determined in the absence of
internal damping and external forces. However, in the wet
analysis, a boundary value problem was formulated and the fluid
actions were treated as generalized external forces. Amabili and
Kwak [17] removed the simplified assumption of identical wet and
dry modes and obtained the mode shapes of the coupled system
via Rayleigh–Ritz approach. Experiments on large amplitude
vibrations of a bottom circular plate of a water-filled container
were presented by Chiba [18].

In case of flowing fluid, in addition to the inertia effect of the
fluid, the stiffness of the coupled plate-flow system decreases with
the flow speed, resulting eventually to instability. Moreover, the
presence of gyroscopic terms in the equations of motion gives rise
to complex modes and therefore different points of the plate do
not oscillate in-phase anymore. Guo and Païdoussis [19] used
Galerkin approach to study the hyrdoelastic instabilities of parallel
assemblies of rectangular plates coupled to flow. They found that
divergence and coupled mode flutter may occur for plates with
any type of end supports, while single-mode flutter only arises for
non-symmetrically supported plates. Kerboua et al. [20] used a
different approach based on the combination of FEM and Sander0s
shell theory to determine the natural frequencies of rectangular
plates in contact with flowing fluid. In their study the velocity
potential and Bernoulli0s equation were used to express the fluid
pressure acting on the structure. Tubaldi and Amabili [21] derived
the eigenfrequencies and complex modes of an infinite plate
periodically supported and coupled to flowing fluid using the
Rayleigh–Ritz method. They found that for sufficiently high flow
velocities the system becomes statically unstable. Implicit in the
authors0 analysis was the assumption that the plate deflection was
the same between any two successive supports in the flow
direction, aside from a phase change (change in sign) between
two successive supports and the next set of supports, i.e. from one
“bay” to the next. Indeed, for the low speed case treated by the
authors, the instability is divergence at low speeds (rather than
flutter which occurs at supersonic speeds) and the divergence
instability is dominated by a single structural mode. A general
aerodynamic case of a single elastic plate embedded in a rigid
surface (baffle) has been treated in Dowell [22]. Dowell also
discussed the case of both finite and infinite plates on periodic
supports for high supersonic flow [23]. As the number of bays
becomes larger, he found that the flow velocity at which flutter
occurs decreases. In supersonic flow the elastic plate deflections
increase from one bay to the next bay and this must be taken into
account. For a finite square panel, Dowell [24] found that at high
Mach number the flutter frequency is between the first and
second panel natural modal frequencies while over the subsonic
range of Mach number the flutter frequency rapidly falls to zero
and the panel diverges rather than flutters.

The literature related to non-linear studies of plates coupled to
flowing fluid is scarce. Non-linear flutter of rectangular plates was
investigated by Dowell [25,26]. Ellen [27] studied the asymptotic
non-linear stability of simply supported rectangular plates sub-
jected to incompressible flow (on one side only) considering both
structural and fluid-dynamic non-linearities. The analysis was
based on single-mode Galerkin approach and it was shown that
fluid-flow non-linearities introduce a subcritical instability while
the stabilizing structural non-linearities have a dominant effect in
controlling the overall non-linear behavior. Lucey et al. [28]
examined the dynamics of a finite length plate, mainly in post-
divergence regime where coupled-mode flutter may arise. The
flow was considered to be inviscid and the solution of the coupled
problem was obtained by boundary-element and finite-difference
method. The unsteady interaction between a simple elastic plate
and a mean flow has a number of interesting features such as the
existence of negative-energy waves (NEWs). Indeed by

introducing the concept of modal wave energy, Landahl [29] and
Benjamin [30,31] showed that over a range of frequencies neutral
modes with negative wave energy exist (also named class A waves
by Benjamin). In particular, Landahl [29] explained the seemingly
paradoxical result that damping destabilizes class A waves by
studying the flutter of an infinite panel in incompressible potential
flow. It was shown that these waves are associated with a decrease
of the total kinetic and elastic energy of the fluid and the wall, so
that any dissipation of energy in the wall will only increase the
wave. It was also found that the Kelvin–Helmholtz type of
instability will occur when the effective stiffness of the panel is
too low to withstand the pressure forces induced on the wall.
Using the same concept of modal wave energy, Peake [32] studied
the non-linear stability of plates for heavy fluid loading consider-
ing both plate and fluid non-linearities analytically. Also in this
case it was found that the instability may arise if the destabilizing
force due to the fluid loading exceeds the restoring stiffness of
the plate.

Yao and Li [33] studied the non-linear dynamic characteristics
of a simply supported laminated composite plate with geometric
non-linearity in incompressible subsonic flow using the von Kar-
man theory. The corresponding bifurcation diagrams of the lami-
nated plate showed pitchfork bifurcations for different ply angles
once the flow velocity was increased.

The present study aims to extend the recent work of Tubaldi
and Amabili [21] by studying non-linear vibrations and stability of
thin rectangular plates with immovable edges coupled to axial
flow. The plate is periodically supported in both directions so that
it is composed of an infinite number of supported rectangular
plates with slope continuity at the edges and is immersed in axial
flow on its upper side. In the case of flat plates, bifurcation
diagrams with respect to the flow velocity are depicted and show
a static loss of stability due to a pitchfork bifurcation. When
geometric imperfections are taken into account, the pitchfork
bifurcation disappears and the system presents a continuous
post-buckling configuration. The non-linear dynamic behavior of
rectangular plates in axial flow under external harmonic excitation
is also investigated. The non-linear vibration response at different
flow velocities is studied by using a code based on pseudo-
arclength continuation and collocation scheme. Convergence of
the solution with the number of generalized coordinates is
numerically verified. A hardening type non-linearity has been
found for the entire flow velocity range explored in the case of
flat plate. Conversely, an initial softening behavior turning to
strong hardening for large vibration amplitudes have been
obtained for imperfect plates. Moreover, modal interactions in
the response of the fundamental mode with higher modes are
detected for certain frequency ranges.

2. Problem definition

The system under investigation, shown in Fig. 1, consists of an
infinitely wide and infinitely long thin plate made of isotropic
homogeneous material subjected to an inviscid axial flow on its
upper surface. The plate is taken in the proximity of a rigid wall as
shown in the Fig. 1(a). A right-handed rectangular Cartesian
reference system ðO; x; y; zÞ is considered with the x; y plane
coinciding with the middle surface of the plate in its initial
undeformed configuration and the z-axis normal to it. The dis-
tance between the plate and the rigid wall is denoted by H and U is
the undisturbed flow velocity of the axial flow. A geometric
imperfection w0 associated with zero initial stress is taken into
account. The plate is assumed to be simply supported with
immovable edges and therefore the following boundary conditions
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