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a b s t r a c t

With the consideration of material and kinematic non-linearities, a non-linear system of two-
dimensional equations for the strongly coupled thickness-shear and flexural vibrations of electroelastic
plates is established by expanding mechanical displacements and electric potential into power series in
the plate thickness coordinate and integrating over the thickness. Since the non-linear equations are too
complicated to be solved directly by known methods, we utilized the Galerkin approximation to convert
the non-linear equation of thickness-shear vibrations into an ordinary differential equation depending
only on time by assuming the mode shape of linear vibrations. This non-linear forced vibration equation
has been solved by the successive approximation method and we plotted frequency–response curves
with different amplitude ratios and electrical voltages. Numerical results showed that the electric field
has a more significant effect on vibration frequency compared with other known factors.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric crystal resonators are key components of many
frequency control and detection applications in various electronic
products in our daily life. By the means of piezoelectric effect, the
properly arranged electrode excites the plate into mechanical
resonant vibrations that can provide a desired frequency which
is needed in electronic circuits [1–3]. The linear two-dimensional
plate theories for high frequency vibrations of piezoelectric
plates have been extensively studied by Mindlin, Tiersten, Lee,
and others with various approximate solutions including the
resonance frequency, mechanical effects of electrodes, thermal
effects, and even electrical parameters of crystal resonators [4–9].
With the growing demands for higher and more accurate fre-
quency and the miniaturization of piezoelectric structures, noted
non-linear phenomena such as derive level dependency (DLD) and
activity dip have emerged along with the frequency instability of
resonators [9,10]. Based on previous experimental and theoretical
studies, it has been revealed that many causes such as material
and kinematic non-linearities, electric fields, initial stresses, and
size effects will cause frequency instability and affect the opera-
tion precision of piezoelectric resonators and structures [11–13].

Furthermore, earlier studies also showed that the effects of electric
field in dielectric and piezoelectric solids are particularly compli-
cated which even have effect on heat waves generation [14,15].
Consequently, the most important problem which challenges
engineers and researchers is how to find the dominant factors of
frequency variation of structures under applied loading conditions.

With this objective in mind, many researchers have employed
analytical or numerical methods to study different non-linear effects
on the frequency shift of thickness-shear vibrations of piezoelectric
plates for various purposes. Yang and Guo [16] have investigated the
effects of higher-order elastic constants on electromechanical coupling
factors. Furthermore, Yang et al. [17,18] established two-dimensional
equations for electroelastic plates and shells with relatively large shear
deformation and obtained non-linear current amplitude–frequency
curves near the resonance. Wu et al. [19] have studied electrically
forced thickness-shear vibrations of quartz crystal plates with non-
linear coupling to the extension and other modes with the finding that
mode couplings affect energy trapping which should be restrained by
selecting appropriate aspect ratios such as length to thickness. Besides
analytical methods, numerical methods have also been tried. Wang
et al. [20] have employed the finite element method to investigate the
non-linear thickness-shear vibrations of quartz crystal plates. Based on
the equations of non-linear three-dimensional piezoelectricity, Patel
et al. [10] have studied well-known drive level dependence (DLD)
phenomenon in quartz crystal resonators. The finite differencemethod
has also been used for the vibration analysis with non-linear Mindlin
plate equations [21].
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In our earlier studies, the non-linear Mindlin plate equations
for strongly coupled thickness-shear and flexural vibrations with
the consideration of material and kinematic non-linearities have
been established [22]. Then the strongly coupled non-linear
equation of thickness-shear vibrations has been solved by the
combination of the Galerkin approximation and homotopy analy-
sis method (HAM) which is a newly emerged technique for strong
non-linear problems [23–25]. The amplitude–frequency relation
we obtained indicated neither kinematic nor material non-
linearities are the main factor of frequency shifts [23–25]. For this
reason, we focus on the effect of electric field in a piezoelectric
crystal plate. The general non-linear electroelastic equations were
first presented by Tiersten and collaborators and have been used
to analyze various problems of elastic plates with fully or partially
electroded piezoelectric actuators and buckling of piezoelectric
plates [26–29]. Tiersten's equations have been lately expanded to
include cubic electric non-linearity by Yang [28].

In this paper, we established two-dimensional equations for
the thickness-shear and flexural vibrations of electroelastic plates
under strong electric fields. With the consideration of cubic
electric non-linearity, these equations are too complicated to be
solved by known methods. For this reason, we only retained the
first-order potential which relates to the voltage across the
electrodes as shown in Fig. 1. Then the non-linear equation of
thickness-shear vibrations has been solved again by the combina-
tion of the Galerkin approximation and successive approximation
method. By plotting frequency–response curves for different
amplitude ratios and voltages, we found that the electric field
has a more important effect on frequency shift which can be
directly used for the examination of non-linear behavior of
resonators, as we intended to from the beginning of this study.

2. The non-linear electroelastic plate equations

The linear Mindlin plate equations have been widely used to
precisely predict the thickness-shear vibration frequency, study
mode couplings and mode conversion, and investigate thermal
effect and other problems related to the resonator design and
applications [5,6]. These results from these equations are generally
accurate and acceptable in practical applications [7,8]. Then it is
natural to derive the non-linear electroelastic plate equations
based on the established procedure. As a demonstration, we
assume mechanical displacements and electric potential as

ujðx1; x2; x3; tÞ ¼ ∑
1

n ¼ 0
uðnÞ
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where uðnÞ
j and ϕ(m) (m¼0, 1, 2, 3) are the nth-order displacements

and the mth-order electric potentials, respectively. It should be
mentioned that the electric potential expansion in (1) is basically
taken from Yang and Tiersten [26,28], which is also similar with
Wang's expansion with slightly different notations [30,31]. Among
these electric potentials, ϕ(1) contributes to the voltage across the
electrodes while ϕ(0) can be used for a complete description in the
unelectroded region [28]. For a fully electroded crystal plate as
shown in Fig. 1, ϕ(1) is independent of the coordinates x1 and x3 in
the plane of plate while ϕ(0)¼0 in this case [28]. In order to
investigate the effect of a strong electric field and consider more
complicated structure such as a partially electroded crystal plate,
we still need to retain all electric potentials in the expansion in (1).

The non-linear Green strain–mechanical displacement and
electric field–electric potential relations are [24,28]
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1
2
ðuk;lþul;kþum;kum;lÞ; k; l;m¼ 1;2;3;

Ei ¼ �ϕ;i; i¼ 1;2;3: ð2Þ

Substitubting (1) into (2), we have the non-linear strain–
displacement and electric field–electric potential relations as
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where δ2i is the Kronecker delta [5].

Now the non-linear constitutive relations with Cauchy stress
and Lagrangean strain tensors are [9,28]

Tij ¼ cijklSklþ
1
2
cijklmnSklSmn�ekijEk�

1
2
eklijEkEl�

1
6
eklmijEkElEm;

Di ¼ eiklSklþεikEkþ
1
2
εkjiEkEjþ

1
6
εkjliEkEjEl; i; j;m;n; k; l¼ 1;2;3;

ð5Þ
where Tij, Di, cijkl, ekij, and εik are stress tensor, electric displace-
ment vector, elastic constants, piezoelectric constants, and dielec-
tric constants, respectively. Generally, cijklmn; eklij; eklmij; εkji, and
εkjli are non-linear material constants which include the effect of
the Maxwell electrostatic stress tensor [26,28]. We found that the
linear portions of the non-linear constitutive equations in (5) are
identical with the linear piezoelectric constitutive equations of the
Mindlin plate theory [5]. The Cauchy stress and Lagrangean strain
tensors are used in the formulation for simplicity of equations
analogous to the linear equations.

The variational equation of non-linear stress equations of
motion and electrostatics is [9,10,28]Z
V
f½ðTijþTikuj;kÞ;i�ρ €uj�δujþðDr;rþD2;2Þδϕg dV ¼ 0;

i; j; k¼ 1;2;3; r¼ 1;3; ð6Þ
where the integral is over the volume of a plate as shown in Fig. 1,
and ρ is the density of a material. For a finite crystal plate with

Fig. 1. A fully electroded AT-cut quartz crystal plate.
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