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In this paper we study crawling locomotion based on directional frictional interactions, namely, frictional
forces that are sensitive to the sign of the sliding velocity. Surface interactions of this type are common in
biology, where they arise from the presence of inclined hairs or scales at the crawler/substrate interface,
leading to low resistance when sliding ‘along the grain’, and high resistance when sliding ‘against the
grain’. This asymmetry can be exploited for locomotion, in a way analogous to what is done in cross-
country skiing (classic style, diagonal stride).

We focus on a model system, namely, a continuous one-dimensional crawler and provide a detailed
study of the motion resulting from several strategies of shape change. In particular, we provide explicit
formulae for the displacements attainable with reciprocal extensions and contractions (breathing), or
through the propagation of extension or contraction waves. We believe that our results will prove
particularly helpful for the study of biological crawling motility and for the design of bio-mimetic

crawling robots.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of locomotion of biological organisms and bio-mimetic
engineered replicas is receiving considerable and increasing attention
in the recent literature [1,3,6,7,13,17-19,22,27,34]. In several cases,
such as motility at the micron scale accomplished by unicellular
organisms, or such as the ability to navigate on rough terrains
exhibited by insects, worms, snakes, etc. Nature has elaborated
strategies that surpass those achievable through current engineering
design. The combination of quantitative observations, theoretical and
computational modelling, design and optimization of bio-inspired
artefacts is however leading to fast progress both in the understanding
of the options Nature has selected and optimized through evolution,
and on the possibility of replicating them (or even improving upon
them) in man-made devices.

For example, the swimming strategies of unicellular organisms can
be understood, starting from videos of their motion captured with a
microscope and processed with machine-learning techniques [6], by
using tools from geometric control theory [2,4]. In fact, self-propulsion
at low Reynolds numbers [31] arises from non-reciprocal looping
in the space of shape parameters [2,6], it can be replicated by using
actuation strategies that can induce non-reciprocal shape changes
[5,19], and optimized by solving optimal control problems [2,4]. This

* Corresponding author at: SISSA, International School for Advanced Studies,
Trieste, Italy.
E-mail address: desimone@sissa.it (A. DeSimone).

http://dx.doi.org/10.1016/j.ijnonlinmec.2014.01.012
0020-7462 © 2014 Elsevier Ltd. All rights reserved.

has also been observed, e.g., in [10], where techniques originally
proposed in [11] for the study of control problems for the ski and the
swing have been extended to the problem of locomotion in fluids.

Crawling motility on solid substrates of some model organisms
(snails, earthwormes, etc.) can be understood using similar techni-
ques. In the case of crawlers exploiting dry friction, or lubricating
fluid layers with complex rheology (such as the mucus secreted by
snails [13,15]), resistance forces are non-linear functions of the
sliding velocity and locomotion is typically accomplished through
stick-and-slip. Even when resistance forces are linear in the sliding
velocity, if they also depend on the size of the contact region, then
locomotion is still possible, provided that more elaborate strate-
gies are employed [17,18,29]. These are very similar to those that
are effective in low Reynolds number swimming, and show that
the transition between crawling and swimming motility is much
more blurred than what was previously thought.

The results above may provide a useful theoretical framework
on the way of a more detailed understanding of crawling motility
of metastatic tumor cells, neuronal growth cones etc., see, e.g.,
[12,22]. In addition, they may provide valuable new concepts in
applications, by helping the practical design of a new generation of
soft bio-inspired robots ranging from crawlers able to advance on
rough terrains to microscopic devices that may navigate inside the
human body for diagnostic or therapeutic purposes [7,19,24,36].

Much of the physics of the problem is contained in the question
of which are the minimal mechanisms needed to make (efficient)
self-propulsion possible. Here we concentrate on the question on
how is it possible to extract positional change (i.e., a non-periodic
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history of positions) from reciprocal shape changes (i.e., a very
restrictive class of periodic histories of shape change, obtained by
tracing backward and forward an open curve in shape space). The
famous ‘scallop theorem’ is precisely the statement that this is
impossible for low Reynolds number swimming, see [31]. In addi-
tion, we study the motion produced by the propagation of
travelling waves of contraction or extension, which is a typical
strategy for self-propulsion in biology.

The interest for reciprocal shape changes arises from the fact that
they can be easily accomplished by natural or artificial actuation: the
breathing motion of a balloon (or of a bio-membrane) inflated and
deflated by cyclic variations of (osmotic) pressure, or the motion of a
specimen of a stimulus-responsive material (e.g., a shape-memory
alloy) under cyclic actuation (e.g., temperature change) are all relevant
examples. The conditions under which such oscillatory motions can be
rectified to produce non-zero net displacements has been the object of
several studies, see, e.g., [14,17,23,28]. In this paper, we analyse quasi-
static crawling in the presence of ‘directional’ interactions with the
environment and study in detail a model of continuous one-dimen-
sional crawlers on directional surfaces. By this, we mean a situation in
which the resistance force is not odd in the velocity: this may arise, for
instance, when the substrate is hairy or it is shaped as a ratchet, or else
when the interaction with the substrate is mediated by oblique flexi-
ble filaments or bristles (so that, if one reverses the sign of the velocity
and moves against the grain, then the resistance force does not only
change in sign, but may also change in magnitude). Concrete examples
of such biological or bio-inspired directional surfaces are reviewed, e.
g., in [26]. Prototypes of micro-robots exploring this motility strategy
are presently being manufactured and tested, and will be described in
a forthcoming paper [30].

2. Formulation of the problem

In this study we generalize the approach to quasi-static crawling
introduced in [17,18,29] to the case of directional substrates, namely,
substrates on which the resistance to motion is sensitive to the sign of
the sliding velocity. More precisely, we consider cases in which the
mechanical interactions between the crawler and the substrate on
which it moves are described by a force per unit (current) length
denoted by f(x, t), which we call ‘friction force’. By directional substrate
we mean a surface such that the friction exerted on the crawler at one
point depends (only) on the velocity at that point according to a force—
velocity law that is not odd in the velocity. A relevant example is the
following one-dimensional force-velocity law of Bingham-type:

T_ —u_V(X,t) if v(x,t) <0,
fx,y={ te[-74,7-] ifvx,t)=0, 2.1)
—T4—p v(x,t) if v(x,t)>0,

where 7_,7,,u_,u, are all non-negative material parameters,’' see
Fig. 1.

There are two interesting special cases of (2.1), obtained by setting
either 4, =p_ =0 or 7. =7_ =0. We refer to them as the dry
friction and the Newtonian friction case, respectively, because they are
reminiscent of the tangential forces arising either from dry friction or
from the drag due to a Newtonian viscous fluid, see Fig. 2. In the case
of dry friction, the force depends only on the sign of the velocity
(4, =p_ =0), whereas in the Newtonian case there are no yield
forces (7, =7_ =0), so that friction depends linearly on speed
through a coefficient determined by the direction of motion.

! We exclude the trivial case when all the parameters vanish (u, =p_=
7, =7_ =0) and therefore no frictional interaction with the substrate occurs.

f(=z.t)

v(z,t)
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Fig. 1. The general force-velocity law (2.1) for friction used in this study.

We study a straight, one-dimensional crawler moving along a
straight line. Let the coordinate X describe the crawler's body in the
reference configuration. The left end of the body is denoted with
X1 =0, while the right end with X, =L, where L is the reference
length. The motion of the crawler is described by the function

XX, t) =x1(6)+s(X, b),

where x;(t) = x(Xj, t) is the current position of the left end of the
crawler (similarly, we define x,(t) = x(X>, t) as the current position of
the right end), while the arc-length s(X,t), which is the current
distance of point X from the left end, describes its shape in the
deformed configuration. By definition we have s(0,t)=0, while,
denoting with a prime the derivative with respect to X, we guarantee
that the deformation described by (2.2) is one-to-one for every t by
assuming that

(2.2)

s'(X,t)>0. 2.3)
The length [(t) of the crawler at time t is given by
L
Iity= / s'(X, t) dX, 24
0

and the Eulerian velocity v(x, t) at position x of the crawler and time ¢t
reads

V(x,t) =X(Xx, t) =X1(t) +S(Xx, 1), 2.5)

where Xy =s~1(x—x1(t), t).

We assume that the crawler is able to control its shape, namely,
to freely prescribe s(X,t) subject only to the constraint (2.3).
Moreover, we neglect inertia and make use of the force balance

~l(t)
F@t)= fxi(t)+s,6)ds=0 (2.6)
0

to obtain the velocity x1(t) at the left hand side of the crawler.

3. Crawling with two shape parameters

In this section, we restrict our study to the case of a model

crawler composed of two segments, namely, X;X* and X*X;, each
of which is allowed to deform only affinely. Therefore, the shape of
the crawler can be described by just two parameters, such as the
current lengths of the two segments [i(t) =x*(t)—x;(t) and
L (t) = x5(t) — X*(t), where x*(t) = x(X*, t). We shall consider in the
following two special cases of these systems, particularly relevant
to crawling on directional surfaces.

3.1. Crawling with only one shape parameter: breathers

We start by considering a simpler crawler made of a single
segment that can only deform affinely, so that s(X, t) can be expressed
as a function of the current length [(t) in the following way:

S(X, ) = )I(l(t). 3.1
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