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a b s t r a c t

Based on the nonlocal continuum theory, the nonlinear primary resonance of nano beam with the axial
initial load is investigated. The amplitude–frequency response for the primary resonance is derived with
the multiple scale method and the stability is analyzed. The nonlinear primary resonance of nano beam is
discussed with the influences of small scale effect, axial initial load, mode number, Winkler foundation
modulus and the ratio of the length to the diameter. From the results, the typical hardening nonlinearity
can be observed. Moreover, some significant and interesting nonlinear phenomena can be found for the
primary resonance of nano beam. This work is expected to be useful for the design and analysis for the
nonlinear dynamic behaviors of structures at nano scales.

Crown Copyright & 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

With the superior mechanical characteristics for nano struc-
tures, microelectromechanical (MEMS) and nanoelectromechani-
cal (NEMS) devices are widely applied [1–4]. As the typical
element in the nano mechanical systems, nano beam can be used
as nano sensors, actuators, molecular bearings and atomic-force
microscope [5–8]. Therefore, both static and dynamic behaviors of
nano beam have drawn a lot of attention and shown the size-
dependent properties [9–13]. Because it is difficult to control
experiments at the nanometer scale, proper and effective mathe-
matical methods have been performed.

The molecular dynamics (MD) simulation is rather difficult to
be carried out with large-scale nano systems and limited to a small
case. Although the classical continuum method provides simple
mechanical models and possesses the characteristic of less time-
consuming, it cannot present the size-dependent behaviors and
lacks the accurate description of nano systems. It should be noted
that these characteristics become more significant at the small
scales for nano beams [14–16].

The nonlocal continuum theory presented by Eringen [17,18] is
different from the classical models. Because it assumes that the
stress at a reference point behaves as a function of the strain at
every point in the body, it can provide proper and reliable results.

As a result, based on the nonlocal model, many researches have
been reported on the buckling [9,12,13,19,20], vibration [21–23]
and wave propagation [24,25] characteristics of nano beams, in
which the scale effects are considered. In recent years, besides a
lot of research articles have been reported on the nano scale
structures by the nonlocal continuum theory, more explicit infor-
mation can be found in some review papers [26–28].

From the research status of dynamical properties for nano
beams, it is found that only several papers have been reported on
nonlinear vibration properties by both classical and nonlocal
continuum theories. As an early work on the nonlinear vibration
of nano beams/nanotubes, Fu et al. studied the nonlinear free
vibration of embedded nanotubes with the classical beam model
and the incremental harmonic balanced method [29]. Ke et al.
presented the nonlinear free vibration of embedded double-
walled nanotubes with the nonlocal Timoshenko beam theory
[30]. Reddy gave the nonlocal nonlinear formulations of classical
and shear deformation theories for beams and plates [31]. By the
classical Euler–Bernoulli beam model, Khorasany and Hutton
analyzed the wave propagation characteristics of nanotubes with
the temperature and geometrical nonlinearity [32]. Ansari and
Hemmatnezhad applied the finite element formation to present
the frequency response of nonlinear free vibration for double-
walled nanotubes [33]. Soltani and Farshidianfar presented the
periodic solution for nonlinear free vibration of nanotube convey-
ing fluid [34].

Moreover, due to the large elastic deformation, nonlinear vibration
for the microelectromechanical (MEMS) and nanoelectromechanical
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(NEMS) always appears in practical engineering. Nonlinear vibration
characteristics play an important role on the design and analysis of
MEMS and NEMS, in which the methods are quite different from the
linear vibration. The primary resonance of MEMS and NEMS has been
reported by Kacem et al. [35]. As a series work, Kacem et al. used the
classical continuum method for nonlinear dynamics of MEMS and
NEMS and derived some interesting and valuable results [35–39].

Based on these papers, it can be seen that large deformation
within the elastic limit and nonlinear behaviors are usually
observed for nano beams. As a result, the finite deformation
makes the nonlinear analysis essential. Although most dynamical
researches are concerned on the linear properties, nonlinear
analyses are necessary as one of the interesting and valuable
directions in future studies on nano beams. However, few inves-
tigations have been presented on the nonlinear dynamic proper-
ties of nano beam with the external harmonic excitation or axial
initial load, especially for the resonant characteristics with small
scale effects. Taking these factors into account, proper under-
standing and development of nonlinear vibration properties of
nano beams can provide a useful help for the design and analysis
of MEMS/NEMS devices working at large amplitudes.

In this work, the primary resonance of nano beam with the
axial initial load is concerned and studied by the nonlocal
continuum theory. Both damping and small scale effects are
considered. The influences of the scale coefficient, mode order,
initial load, ratio of the length to the diameter and Winkler
foundation modulus of elastic matrix on the frequency response
of the primary resonance are analyzed.

2. Equation of nonlinear vibration

The nano beam embedded in the viscous elastic matrix is
shown in Fig. 1. According to the work of Eringen [17,18], the
constitutive relation of nonlocal elasticity is presented with the
form of the integral equation as

skl;k�ρ €ul ¼ 0; ð1aÞ

sklðxÞ ¼
Z
V
αðx; x0Þτklðx0ÞdVðx0Þ; ð1bÞ

εkl ¼
1
2
ðuk;lþul;kÞ; ð1cÞ

where skl is the nonlocal stress tensor, εkl the strain tensor, ρ the
mass density, ul the displacement vector, τklðx0Þ the classical (i.e.
local) stress tensor, αðx; x0Þ the kernel function which describes the
influence of the strains at various location x0 on the stress at a
given location x and V the entire body considered.

We can observe from Eq. (1) that not only the strain state of the
reference location x has the influence on the stress state at x, but
also the strain state at x0 can affect on the stress state of the same
location. Then, the following relation can be derived:

½1�ðe0aÞ2∇2�r¼ C0 : ε; ð2Þ
where C0 is the elastic stiffness matrix of classical elasticity, e0 the
constant appropriate to each material and a the internal charac-
teristic length (e.g., the length of C–C bond, the lattice spacing and

the granular distance). It should be noted that the value of e0 is
determined from experiments or by matching dispersion curves of
the plane waves with the atomic lattice dynamics. So e0a means
the scale coefficient which denotes the small scale effect on the
mechanical characteristics of nano structures. It will be reduced to
the classical (i.e. local) model for e0a¼0.

For the Euler–Bernoulli beam model, the axial force and the
resultant bending moment are

N¼
Z
A
sxdA; M¼

Z
A
zsxdA; ð3Þ

where z is the transverse coordinate measured in the direction of
the deflection and A the area of the cross section of the nano beam.

The displacement fields can be expressed as the following
form:

u1ðx; z; tÞ ¼ uðx; tÞ�z
∂w
∂x

; u2 ¼ 0; u3ðx; z; tÞ ¼wðx; tÞ; ð4Þ

where u and w are the axial and transverse displacements,
respectively.

For the nonlinear vibration by the large amplitude, the nonzero
von Kármán nonlinear strain should be considered and the
relation between the strain and displacement is

ε0 ¼
∂u
∂x

þ1
2

∂w
∂x

� �2

; ε1 ¼ �zκ ð5Þ

where ε0 is the nonlinear extensional strain, κ¼ �∂2w=∂x2 the
bending strain and ε1 the strain induced by κ. Then, the von
Kármán nonlinear strain (i.e. εnon) is

εnon ¼ ε0þε1 ¼
∂u
∂x

þ1
2

∂w
∂x

� �2

�z
∂2w
∂x2

; ð6Þ

For the transverse vibration with large deformation, the vibra-
tion equation can be expressed as [40,41]

∂S
∂x

¼ kwwþc
∂w
∂t

þρA
∂2w
∂t2

�Nx
∂2w
∂x2

; ð7Þ

where S¼ ∂M=∂x is the shear force, kw the Winkler foundation
modulus which can be described as the Winkler model [42,43], c
the damping coefficient, Nx the axial load which can be expressed
as Nx ¼ s0

xA and s0
x the axial initial stress. Usually, the dimension-

less axial stress β¼s0
x=E is used. A negative β denotes the

compression load and a positive β means the tension case.
From Eqs. (2)–(5), we have the following relation:

N�ðe0aÞ2
∂2N
∂x2

¼ EAε0; ð8aÞ

M�ðe0aÞ2
∂2M
∂x2

¼ EIκ; ð8bÞ

where E the Young's modulus and I ¼ R
Az

2d A the moment of
inertia.

As a result, for the nano beam embedded in elastic matrix
under the transverse harmonic excitation, the nonlinear vibration
equation can be derived as

EI∂
4w
∂x4 þ 1�ðe0aÞ2 ∂2

∂x2

h i
ρA∂2w

∂t2 þ 1�ðe0aÞ2 ∂2
∂x2

h i
kwwþ 1�ðe0aÞ2 ∂2

∂x2

h i
c∂w∂t

¼ 1�ðe0aÞ2
∂2

∂x2

� �
N0

∂2w
∂x2

þ 1�ðe0aÞ2
∂2

∂x2

� �

EA
2L

Z L

0

∂w
∂x

� �2

dx

" #
∂2w
∂x2

þ 1�ðe0aÞ2
∂2

∂x2

� �
f cos Ωt; ð9Þ

where f is the spatial distribution of the transverse load and Ω the
corresponding frequency.
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Fig. 1. Nano beam embedded in viscous elastic matrix with axial initial load.
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