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a b s t r a c t

The paper aims to perform shakedown analysis of truss structures with nonlinear kinematic hardening.
Both the static and kinematic shakedown analyses of truss structures were conducted analytically and
numerically to bound the shakedown limit. First, the problem statement leads to the lower bound
(primal) formulation accounting for nonlinear kinematic hardening extended from the Melan's static
shakedown theorem. In particular, the Hölder inequality is then utilized to establish the corresponding
upper bound (dual) formulation from the lower bound formulation as well as to confirm the duality
relationship between them. The derived upper bound formulation is an equivalent form of the Koiter’s
kinematic shakedown formulation for trusses without involving time integrals. Further, both the primal
and the dual analyses of truss structures were conducted using the optimization algorithms provided by
MATLAB. Accordingly, the primal analysis and the dual analysis are validated by converging to the
shakedown limit efficiently. Finally, the step-by-step finite-element analysis by using ABAQUS is also
performed to verify the analytical formulation and numerical implementation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering structures are often subjected to cyclic loads.
Structures of elastic–plastic materials under cyclic loads may
behave in some different types, namely pure elastic, elastic sha-
kedown, ratcheting (incremental collapse), plastic shakedown
(reversed plasticity) and plastic collapse (unconstrained plastic
flow) [1,2]. Among them, elastic shakedown, ratcheting and plastic
shakedown are three types of elastic–plastic responses induced by
the cyclic loads ranging between the elastic limit and plastic col-
lapse loads. An elastic–plastic structure is said to shake down to an
elastic state if it deforms plastically in the initial loading cycles and
then reacts purely elastically in the sequential cycles e.g. [1–5]. As
well known, shakedown analysis is a well-established direct
method to determine the shakedown limit based on the lower
bound (Melan's static) or upper bound (Koiter's kinematic) theo-
rem e.g. [1–5]. By the shakedown theorems, we can formulate
shakedown analysis into constrained optimization problems by
mathematical programming techniques e.g. [6] to seek the sha-
kedown limit. On the one hand, we seek the greatest lower bound
by the static theorem e.g. [7,8]. On the other hand, we search for
the least upper bound by the kinematic theorem e.g. [9,10].

Moreover, the duality holding between the lower and the upper
bound formulations has been well revealed in shakedown analysis
e.g. [11–22]. Accordingly, we can apply the lower and upper bound
theorems to bound the exact shakedown limit from below and
above, respectively.

The Melan's static shakedown theorem was originally stated for
structures made of elastic-perfectly plastic materials. However, real-
life materials generally demonstrate kinematic hardening behavior
[23]. Accordingly, it is more realistic to take kinematical hardening
into account while dealing with shakedown analysis problems. In
literature, much effort has been made to extend the classical shake-
down theorems to consider the effects of hardening [24–29]. Com-
pared to other hardening models, the Armstrong–Frederick nonlinear
kinematic hardening model [30,31] is more realistic one for shake-
down analysis of metals. However, it seems that no effort has been
made to shakedown analyses of truss structures with nonlinear
kinematic hardening. The paper aims to perform shakedown analysis
of truss structures with nonlinear kinematic hardening. It may be
formidable to derive the corresponding shakedown limits directly.
However, it is possible to acquire the exact solutions by the duality
between static and kinematic formulations. Namely, we can approach
from below and above the shakedown limit by conducting static and
kinematic shakedown analyses of truss structures, respectively. In the
paper, we first state the problem statement of shakedown analysis in
the form of the lower bound (primal) formulation. The lower bound
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(primal) formulation is then transformed to the upper bound (dual)
formulation.

On the other hand, limit analysis is a special case of shakedown
analysis. Accordingly, there exist many similarities between limit
and shakedown analysis. In limit analysis, Yang [32] applied the
Hölder inequality [33] to establish the kinematic (dual) formula-
tion transformed from the corresponding static (primal) formula-
tion. In particular, Yang [32] stated the primal (lower bound) for-
mulation with the yield criterion denoted in the form of l1-norm
while dealing with limit analysis of truss structures. Yang [32]
applied the Hölder inequality [33] to establish the corresponding
dual (upper bound) formulation with the l1-norm on plastic
deformation rate of truss members.

Following the successful experience in limit analysis of truss
structures [32], the paper aims to perform shakedown analysis of
truss structures with nonlinear kinematic hardening. Both the
static and kinematic shakedown analyses of truss structures were
conducted to bound the exact shakedown limit. First, the problem
statement of shakedown analysis is to be stated in the form of the
lower bound (primal) formulation involving with l1-norm of axial
forces [32]. By the Hölder inequality [33], the lower bound (pri-
mal) formulation is then transformed to the upper bound (dual)
formulation with the l1-norm [32]. The equality relationship
between the greatest lower bound and the least upper bound is to
be analytically confirmed to illustrate the strong duality between
the lower and upper bound formulations. To illustrate numerically
the strong duality between the lower and upper bound formula-
tions, the primal and the dual analysis are to be performed by the
computing tool MATLAB [34], respectively. Finally, the step-by-
step finite-element analysis by using ABAQUS is also performed to
verify the analytical formulation and numerical implementation.

2. Analytical background

We consider truss members made of materials with nonlinear
kinematic hardening. The Armstrong–Frederick kinematic hard-
ening model [30,31] is adopted. Corresponding to the Armstrong–
Frederick nonlinear kinematic hardening for a von Mises material,
the yield function is denoted as [35]

f ðσ�XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðS�XdevÞ : ðS�XdevÞ�σ0

r
ð1Þ

where S is the deviatoric stress tensor, Xdev is the deviatoric part of
the backstress tensor X acting to translate the center of the yield
surface, σ0 is the yield strength. It is noted that the backstress X
denotes the movement of the yield surface center. Accordingly, the
convexity of the yield surface preserves for a von Mises material
with nonlinear kinematic hardening.

By the Armstrong–Frederick kinematic hardening model
[30,31], the backstress rate _X is described as

_X ¼ 2
3
C _εp�γX _ε

p ð2Þ

where C and γ are material parameters, _εp is the plastic strain rate, _ε
p

denotes the equivalent plastic strain rate.
As well known, truss members carry only axial forces. For

uniaxial loading in the 1-direction, we have stress tensors σij ¼ 0
except σ11a0. By the incompressibility condition and symmetry,
we have the strain rate tensors _εp22 ¼ _εp33 ¼ � _εp11=2. On the
other hand, the backstress is also a deviatoric tensor with
X22 ¼ X33 ¼ �X11=2[35].

Furthermore, we have the equivalent stress σ associated with
the von Mises yield criterion expressed as

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðσ11�X11Þ�ðσ22�X22Þ½ �2þ1

2
ðσ22�X22Þ�ðσ33�X33Þ½ �2

r

þ1
2
ðσ33�X33Þ�ðσ11�X11Þ½ �2

¼ ðσ11�X11Þ�ðσ22�X22Þ
�� ��

¼ σ11�
3
2
X11

����
���� ð3Þ

Thus, the yield function can be simplified as [36]

f ¼ σ11�
3
2
X11

����
�����σ0 ð4Þ

Due to the uniaxial loading condition, it is convenient to
describe the yield behavior of truss members in terms of axial
forces. Thus, the yield condition for the i� th truss member with
initial cross sectional area A0 and yield strength σ0 can be gen-
erally described as

A0 σ
ðiÞ
11�

3
2
XðiÞ
11

����
����¼ tðiÞ �3

2
xðiÞ

����
����rA0σ0 ð5Þ

where tðiÞ ¼ A0σ
ðiÞ
11, x

ðiÞ ¼ A0X
ðiÞ
11 are the axial force and the (force-

like) axial backstress of the i� th truss member, σðiÞ
11 and XðiÞ

11 are
the corresponding axial stress and axial backstress, respectively.

Note that, if we normalize the constitutive model as follows

tðiÞ

A0σ0
� 3xðiÞ

2A0σ0

����
����¼ tðiÞ �3

2
xðiÞ

����
����r1 ð6Þ

with

tðiÞ ¼ tðiÞ

A0σ0
¼ σðiÞ

11
σ0

ð7Þ

xðiÞ ¼ xðiÞ

A0σ0
¼ XðiÞ

11

σ0
ð8Þ

Then we can state the constitutive model in the form of
l1-norm as

t�3
2
x 1 ¼max

i
tðiÞ �3

2
xðiÞ

����
����

� �
r1

����
���� ð9Þ

where t, x are vectors with components tðiÞ, xðiÞ, respectively.
On the other hand, the equivalent plastic strain rate _ε

p
asso-

ciated with the von Mises yield criterion is expressed as

_ε
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
9

ð_εp11� _εp22Þ2þð_εp22� _εp33Þ2þð_εp33� _εp11Þ2
h ir

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
9

3
2
_εp11

� �2
s

¼ _εp11
�� �� ð10Þ

For uniaxial loading with the initial condition Xð0Þ ¼ 0, the
values of the backstress X11 can be obtained by Eq. (2) as follows

For uniaxial tension, we have [37]

XðiÞ
11 ¼

2
3
C
γ 1�e�γεpðiÞ11

	 

ð11Þ

where εpðiÞ11 is the axial plastic strain of the i� th truss member.
For uniaxial compression, we have [37]

XðiÞ
11 ¼

2
3
C
γ �1þeγε

pðiÞ
11

	 

ð12Þ

Thus, the backstress of the i� th truss member, XðiÞ
11, will be

expressed as Eqs. (11) or (12) depending on the truss member
subjected to tensile or compressive loading.
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