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a b s t r a c t

In this work, the phenomenological viscoplastic DSGZ model (Duan et al., 2001 [13]), developed for
glassy or semi-crystalline polymers, is numerically implemented in a three-dimensional framework,
following an implicit formulation. The computational methodology is based on the radial return mapping
algorithm. This implicit formulation leads to the definition of the consistent tangent modulus which
permits the implementation in incremental micromechanical scale transition analysis. The extended
model is validated by simulating the polypropylene thermoplastic behavior at various strain rates (from
0.92 s�1 to 258 s�1) and temperatures (from 20 °C to 60 °C). The model parameters for the studied
material are identified using a heuristic optimization strategy based on genetic algorithm. The cap-
abilities of the new implementation framework are illustrated by performing finite element simulations
for multiaxial loading.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Semi crystalline polymers are well known to exhibit a rate and
temperature dependent behavior. With the increase interest for
this kind of materials, in particular in the automotive industry,
many phenomenological models have been developed
[29,5,10,21,12,16,23,3,36,4,1] in order to take into account these
properties. Many studies have also been performed to identify the
evolution of damage in polymers and polymeric composites
[25,26,37,2].

Several researches have proposed models to account for the
viscoplastic behavior of polymers and they have developed
appropriate implementation techniques for numerical calculations
[32,28,31]. Some of the modeling efforts are focusing on semi-
crystalline [39], glassy [35] or amorphous polymers [15].

Among the modeling efforts, the DSGZ model developed initi-
ally by [13] shows very interesting features and capabilities for
viscoplasticity of polymers. Indeed, the DSGZ formulation is based
on four previous models and it is able to trace different types of
polymer behavior as the yielding and the hardening or softening of
polymers.

Its initial one-dimensional form has been extended in
3 dimensions and implemented numerically following an explicit
formulation [14]. The purpose of this paper is to propose for the
first time a new, numerically implicit, formulation of the three-
dimensional DSGZ phenomenological viscoplastic model and to
implement it in the finite element software ABAQUS. Such an
implementation allows us to use the DSGZ model as a constitutive
model for matrix material in an incremental micromechanical
analysis of glass fiber reinforced thermoplastic composites. Indeed,
such homogenization schemes require the expression of the tan-
gent modulus. This requirement is fulfilled using an implicit
numerical integration scheme to compute the consistent tangent
modulus at every step of the analysis by integrating the strain rate
and the temperature effect on the matrix.

To perform numerical studies, appropriate DSGZ model para-
meters are identified experimentally on a thermoplastic material,
namely polypropylene (PP), at different strain rates and tempera-
tures. Certain methodologies have been proposed in the literature
to identify viscoelastic/viscoplastic material parameters for poly-
mers [22,40]. In this work, the parameter identification is achieved
using a genetic algorithm coupled to gradient-based methods,
which was applied successfully for shape memory alloys [34,8].
The experimental identification and validation of the model are
based on thermomechanical tensile tests. Then its capability to
simulate multiaxial loading is demonstrated.
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This paper is structured as follows: the first part is dedicated to
a brief reminder of the background of this interesting model. The
second part presents the numerical implicit formulation and the
computation of the consistent tangent modulus, allowing the
formulation of an algorithm for the finite element code ABAQUS.
The next part focuses on two aspects: the identification of the
model parameters for polypropylene material (PP) and the
experimental validation by comparison with stress–strain curves
obtained at different strain rates and temperatures. The fourth part
of this paper is devoted to the application of the model by simu-
lating multiaxial tensile-shear loading cases. These simulations are
performed for 6 strain rates and 3 temperatures. Finally, the last
part is dedicated to the application of the model on a dynamic load
simulation. The aim of this part is to illustrate the capability of the
implemented implicit model to be utilized for structural FE
analysis.

2. DSGZ model background

The DSGZ is a viscoplastic phenomenological model developed
for glassy or semi-crystalline polymers. It has the advantage to
take into account the effect of the strain ε, the strain rate _ε, the
temperature T, the softening and the hardening. According to the
initial DSGZ constitutive law, the stress, σ, is given by

σðε; _ε; TÞ ¼ K fðεÞþ qðε; _ε; TÞ�fðεÞ½ �rðε; _ε; TÞ½ �hð _ε; TÞ; ð1Þ

with

fðεÞ ¼ e�C1εþεC2
� �

1�e�αε� �
; hð _ε; TÞ ¼ _εmea=T ;

qðε; _ε; TÞ ¼ εe 1�ðε=C3hð _ε ;TÞÞ½ �
C3hð _ε; TÞ

; rðε; _ε; TÞ ¼ e lnðhð _ε ;TÞÞ�C4½ �ε; ð2Þ

where K, C1, C2, C3, C4, a, α and m are the model constants.
Eq. (1) is based on four previously developed models, namely

the Johnson–Cook, the G'Sell–Jonas, the Matsuoka, and the Brooks
models. The model proposed by [6] is a constitutive law for
dynamically recrystallizable materials. DSGZ model adopts a
similar structure to Brooks model but the functions f, q, h and r are
different. G’Sell and Jonas [17] developed a phenomenological
model for semi-crystalline polymers, which has the advantage of
integrating the effects of viscoelasticity and viscoplasticity in a
single equation. This aspect is taken into account in the DSGZ
model through the term hð _ε; TÞ. Johnson and Cook [27] proposed a
simple model to describe the plastic behavior of ductile materials.
Such behavior is integrated in Eq. (1) using the term f. Finally,
Matsuoka model [7] describes the behavior of glassy polymers. It
includes the effects of nonlinear viscoelasticity, elasticity and the
softening, but it does not account properly large deformations
mechanisms. The authors of the DSGZ model used a simplified
form of Matsuoka model to describe the behavior jump exhibited
at the yield point of glassy polymers.

It is worth mentioning that the main purpose of the present
paper is to provide a numerical formulation of a proper visco-
plastic model for polymers and the inherent tangent modulus
computation. Hence, the DSGZ model is chosen here as an illus-
trative implementation example. Further details and insights
about the mathematical formulation of the model (in particular
the strain rate, strain and temperature sensitivities of functions f,
q, h and r) and material parameters K, C1 to C4, a and α can be
found in [13,14].

3. 3D extension of the constitutive model

The one-dimensional version of the DSGZ model has been
extended to 3D by the same authors [14]. In this section the
essential points of the three-dimensional version are discussed.

In elasto-plasticity and elasto-viscoplasticity, it is customary to
separate the strain tensor, ε, into an elastic, εe, and a plastic, εp,
contribution and also to connect the stress tensor σ and the elastic
strain through the Hooke's law. In many cases, the nonlinear
nature of these materials motivates us to write these kinds of
relations in incremental or rate form [9], i.e.

_ε ¼ _εeþ _εp; ð3Þ

_σ ¼ C : ½ _ε� _εp�; ð4Þ
where C denotes the fourth order elastic stiffness tensor. This
formalism has two significant advantages:

1. It allows easier numerical implementation, since any compu-
tational scheme in elasto-plasticity and elasto-viscoplasticity
requires iterative solution (for instance, a return mapping
algorithm based on an elastic trial stress) and incremental
application of the applied loading.

2. The rate form is applicable not only in small deformation pro-
cesses but also in large strain problems. Many experimental
results in elasto-plastic materials are expressed in true (Cauchy)
stress versus true (logarithmic) strain. The expressions (3) and
(4) are very common in the case of hypoelastic materials, where
the _σ denotes an objective stress rate and _ε is the rate of
deformation [30]. Thus, the formulation (3) and (4) can be used
for the DSGZ model [13], which has been developed considering
large deformation processes.

When considering isotropic behavior for the elastic part, Eq. (4)
can be expressed as

_σ ¼ 2μ½ _ε� _εp�þ κ�2
3 μ

� �
tr _εI; ð5Þ

where tr �f g denotes the trace of a second order tensor, I is the
second order identity tensor, μ is the shear modulus and κ is the
bulk modulus. Alternatively, using Eq. (5), the deviatoric parts of
the stress and the strain

s¼ σ�1
3 trσI; e¼ ε�1

3 trεI; ð6Þ
are connected, in a rate form, using the following relation:

_s ¼ 2μ½ _e� _εp�: ð7Þ
The rate of plastic strains is defined by a relation of the form

_εp ¼ _pΛp
; ð8Þ

where _p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=3½ _εp

q
: _εp� and Λp defines the direction of the plastic

flow. In classical J2 viscoplasticity, the direction tensor is given by

Λp ¼ 3
2
s
σ
: ð9Þ

The scalar quantity σ denotes the Mises equivalent stress, given as
the second invariant of s per σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2½s : s�

p
. The DSGZ model

assumes for the yield criterion1

Φpðσ;p; _p; TÞ ¼ σ�σyðp; _p; TÞr0; ð10Þ
where σy is provided by (11) by substituting the strain and strain
rate with p and _p correspondingly

σyðp; _p; TÞ ¼ K fðpÞþ qðp; _p; TÞ�fðpÞ½ �rðp; _p; TÞ½ �hð _p; TÞ; ð11Þ

1 In the extended version of the model [14], the authors included the hydro-
static pressure in the yield criterion. In such case a generally formulated require-
ment Φpðσ; p; _p ; TÞr0 is needed.
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