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In the present study, Harmonic Balance Method (HBM) is applied to investigate the performance of

passive vibration isolators with cubic nonlinear damping. The results reveal that introducing either

cubic nonlinear damping or linear damping could significantly reduce both the displacement

transmissibility and the force transmissibility of the isolators over the resonance region. However, at

the non-resonance region where frequency is lower than the resonant frequency, both the linear

damping and the cubic nonlinear damping have almost no effect on the isolators. At the non-resonance

region with higher frequency, increasing the linear damping has almost no effects on the displacement

transmissibility but could raise the force transmissibility. In addition, the influence of the cubic

nonlinear damping on the isolators is dependent on the type of the disturbing force. If the strength of

the disturbing force is constant and independent of the excitation frequency, then the effect of cubic

nonlinear damping on both the force and displacement transmissibility would be negligible. But, when

the strength of the disturbing force is dependent of the excitation frequency, increasing the cubic

nonlinear damping could slightly reduce the relative displacement transmissibility and increase the

absolute displacement transmissibility but could significantly increase the force transmissibility. These

conclusions are of significant importance in the analysis and design of nonlinear passive vibration

isolators.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration isolator is a device having suitable characteristics
and is often inserted between the vibrating source and the system
requiring protection to reduce the level of transmitted vibration.
The design of isolators always presents a challenge because there
are various criteria and indices, which design engineers have to
take into account, and these indices are usually related to one
another. The choice of a particular index generally depends on the
type of excitations and applications. The assumption of linearity
has been widely applied for the study of the performance
characteristics of vibration isolators. Under the assumption of
linearity, the design criteria and indices can explicitly be related
to the design parameters [1–3], and this can considerably facil-
itate a design process. For example, Soliman and Ismailzadeh [2]
analytically linked the transmissibility of linear isolators to
the optimal values of mass, stiffness and damping ratios, and

consequently related the system resonant characteristics to these
parameters. An excellent review about early studies of linear
isolator systems has been provided by Snowdon [3].

Recently, researchers have shown more and more interests in
nonlinear isolators. This is because all isolators in shock and
vibration systems are inherently nonlinear [4–6], and the exis-
tence of nonlinearities has to be taken into account in designs if a
better performance is to be achieved. For example, Mallik et al. [4]
experimentally verified that the restoring and damping forces of
elastomeric isolators have to be described using a nonlinear
model. Richards and Singh [5] found that rubber isolators have
both nonlinear damping and nonlinear stiffness. As a result of
this, nonlinear isolators have been extensively studied by using
both analytical and numerical approaches [7–10]. Chandra et al.
[7] studied the transient responses of nonlinear, dissipative shock
isolators using perturbation method and Laplace transform. They
also tried to improve the performance of a nonlinear shock
isolator by comparing the behaviors of four different alterna-
tives [8]. Popov and Sankar [9] studied the effect of nonlinear
orifice type damping on the response of a vibration isolator and
found the nonlinear damping can cause a significant shift of the
resonant frequency to a smaller value. Ravindra and Mallik [10]
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parametrically investigated the effects of various types of damp-
ing on the performance of nonlinear vibration isolators under
harmonic excitations. In addition, different methods have been
proposed to optimize the designs of nonlinear isolators [11–14].
Nayfeh et al. [11] proposed an optimal design method based on
the concept of localized nonlinear normal modes. Royston and
Singh [12] proposed an analytical framework for the optimization
design of mounting systems where nonlinear effects were taken
into account. Deshpande et al. [13] investigated the jump avoid-
ance condition for the secondary suspension of a piecewise linear
vibration isolation system, and used the RMS method to optimize
the secondary suspension within a no jump zone. Jazar et al. [14]
studied the jump avoidance condition for the design of a non-
linear passive engine mount. A more comprehensive review can
be found in [15].

For the studies of nonlinear vibration isolators, lumped-para-
meter mathematical models incorporating nth power stiffness
and damping characteristic are usually used [4,5,7–10,16]. Espe-
cially, the vibration isolators with cubic nonlinearity [7–10,17,18]
have drawn particular attentions. More recently, using the con-
cept of the Output Frequency Response Functions (OFRFs) [19],
the authors [20] have revealed that, for vibration isolators, a cubic
nonlinear damping characteristic can produce an ideal vibration
isolation in terms of force transmissibility, such that only the
force transmissibility over the resonant region is modified by the
cubic damping but is almost unaffected over the non-resonant
regions of frequencies. In this study, from a different perspective,
a comprehensive study is carried out by using Harmonic Balance
Method [21–23] to investigate the effects of linear damping and
nonlinear cubic damping on the force and displacement trans-
missibilities of vibration isolators. Two scenarios are considered:
the strength of disturbing force is constant and independent of
the excitation frequency, and the strength of disturbing force is
proportional to the square of exciting frequency. Important
conclusions have been obtained, and they are of significant
importance in the analysis and design of nonlinear passive
vibration isolators, and can be used as a guideline for the design
and selection of mounts or isolators in engineering applications.

2. Vibration isolators with a cubic nonlinear damping

Lumped-parameter mathematical models are frequently used
in the analysis and design of vibration isolation systems as well as
in the interpretation of characteristics of vibrating mechanical
systems. Schematic diagrams of such idealized passive vibration
isolation systems are illustrated in Fig. 1.

The essential features of the passive vibration isolators are a
resilient load supporting mechanism (stiffness) and an energy-
dissipating mechanism (damping). The stiffness and damping
functions could be provided by a single element or by separate
elements. When separate elements are employed, relative

undamped springs are often used with auxiliary damping ele-
ments. In this study, as shown in Fig. 1, the vibration isolator
consists of a parallel combination of a linear spring whose
stiffness is k and a damping mechanism DM, and the equation
of motion for the isolation system can be written as

m€zðtÞþFDMþkdðtÞ ¼ f ðtÞ ð1Þ

where z(t) is the absolute displacement of the isolated mass m,
d(t)¼z(t)�a(t) is the relative displacement across the isolator,
and vibration excitation is represented by the force f tð Þ ¼

A0 cosðotÞ or the foundation displacement aðtÞ ¼ A0 cosðotÞ or its
derivatives. As the stiffness of the spring k is assumed to be
independent of displacement, the elastic restoring force kd(t) is
linearly proportional to the relative displacement. However, the
damping mechanism is assumed to be with a nonlinear cubic
damping curve, and the restoring damping force FDM is given as

FDM ¼ c _dðtÞþc3
_d

3
ðtÞ ð2Þ

where c340 are the nonlinear damping characteristic parameters
of the system.

When the vibration excitation is the foundation displacement
a(t), the primary responses of interest for vibration isolator are
the absolute displacement of the mass z(t) and the relative
displacement d(t). In this case, Eq. (1) can be rewritten as

m €dðtÞþc _dðtÞþc3
_d

3
ðtÞþkdðtÞ ¼ �m €aðtÞ ð3Þ

When the vibration excitation is the force f(t), Eq. (1) can be
rewritten as

m€zðtÞþc _zðtÞþc3 _z
3
ðtÞþkzðtÞ ¼ f ðtÞ ð4Þ

In this case, the primary responses of interest are the force
transmitted to the foundation FT, given by

FT ðtÞ ¼ f ðtÞ�m €zðtÞ ¼ c _zðtÞþc3 _z
3
ðtÞþkzðtÞ ð5Þ

By setting x¼d/A0, y¼z/A0, G¼FT/A0, t¼o0t, o0 ¼
ffiffiffiffiffiffiffiffiffiffi
k=m

p
, l¼

o/o0, x¼ c=
ffiffiffiffiffiffiffi
km
p

, xð2pþ1Þ ¼ cð2pþ1ÞA
2p
0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkmÞ2pþ1

q
, then Eqs. (3)–(5)

can be rewritten as Eqs. (6)–(8) respectively, as follows:

€xðtÞþx _xðtÞþx3 _x
3
ðtÞþxðtÞ ¼ l2 cosðltÞ ð6Þ

€yðtÞþx _yðtÞþx3 _y
3
ðtÞþyðtÞ ¼ cosðltÞ ð7Þ

GðtÞ ¼ x _yðtÞþx3 _y
3
ðtÞþyðtÞ ð8Þ

Eq. (6) shows that the foundation displacement excitation can
be equivalent to a force excitation where the strength of disturb-
ing force is proportional to the square of exciting frequency. In
some other applications, the isolation systems can also be
expressed as Eq. (6), for example the engine mounts for rotating
machines where the imbalance force [24] is the main vibration
excitation source and its strength is dependent on rotating speed.
Eqs. (6) and (7) can be uniformly rewritten as follows,

€DðtÞþx _DðtÞþx3
_D

3
ðtÞþDðtÞ ¼ AcosðltÞ ð9Þ

where A¼l2 for the foundation displacement case and A¼1 for
the force excitation case, and the normalized force transmitted to
foundation then can be rewritten as

GðtÞ ¼ x _DðtÞþx3
_D

3
ðtÞþDðtÞ ¼ A cosðltÞ� €DðtÞ ð10Þ

Moreover, when absolute displacement is considered for the
foundation displacement excitation case, the vibration transmis-
sibility can be measured through

zðtÞ ¼DðtÞþcosðltÞ ð11Þ

A good displacement excitation isolator should possess of low
displacement transmissibility, measured by D(t) or zðtÞ. Similarly,

m

k

z(t)

f(t)

a(t)
DM

Fig. 1. Lumped-parameter representation of idealized vibration isolator.
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