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a b s t r a c t

The stochastic averaging method for strongly non-linear oscillators with lightly fractional derivative

damping of order a (0oar1) subject to bounded noise excitations is proposed by using the

generalized harmonic function. The system state is approximated by a two-dimensional time-

homogeneous diffusion Markov process of amplitude and phase difference using the proposed

stochastic averaging method. The approximate stationary probability density of response is obtained

by solving the reduced Fokker–Planck–Kolmogorov (FPK) equation using the finite difference method

and successive over relaxation method. A Duffing oscillator is taken as an example to show the

application and validity of the method. In the case of primary resonance, the stochastic jump of the

Duffing oscillator with fractional derivative damping and its P-bifurcation as the system parameters

change are examined for the first time using the stationary probability density of amplitude.

& 2011 Elsevier Ltd. All rights reserved.

1. Introductions

In the past decades, there have been numerous investi-
gations on fractional calculus and its applications in the fields
of engineering, science and economics [1,2]. Using fractional
calculus, the frequency-dependent damping behavior of various
materials can be described very well [3–5]. In particular, the
response of non-linear oscillators with small fractional derivative
damping has been studied by many authors using various
methods [6–13].

Bounded noise is a harmonic function with constant amplitude
and random frequency and phase. It was firstly proposed by
Stratonovich [14], and is a good model for many random excita-
tions in engineering. For example, by adjusting its parameters, the
Dryden and von Karman spectra of wind turbulence can be fit
very well [15]. It can be a reasonable model for traveling loads
and structures [16,17]. So far, the behavior of a variety of systems
under bounded noise excitations has been studied, including the
stochastic response [18–20], stability [18,21,22], chaotic motion
[23–25], jump and bifurcation [26,27] of strongly non-linear
oscillators. In addition, the principal parametric resonance, exter-
nal resonance and internal resonances of some systems under
bounded noise excitation have been systematically studied
[28,29]. The dynamic behavior of non-linear system subject to

bounded noise excitations is more complicated compared with
that of the same system under broadband noise excitations. So
far, to the authors’ knowledge, the response of fractionally
damped stochastic systems subject to bounded noise excitations
and effect of fractional order on stochastic jump and bifurcation
have not been studied yet.

In the present paper, a stochastic averaging method for
strongly non-linear oscillators with lightly fractional derivative
damping under bounded noise excitations is developed. The
method is applied to study the response of Duffing oscillator
with fractional derivative damping under bounded noise excita-
tion. The reduced averaged FPK equation is solved using the finite
difference method and successive over relaxation method.
Based on the stationary probability density of amplitude, the
stochastic jump and its bifurcation of Duffing oscillator with
fractional derivative damping as the fractional order changes
are investigated. The analytical solutions are verified using digital
simulation.

2. Stochastic averaging

The stochastic averaging method for strongly non-linear oscil-
lators with small fractional derivative damping under external
and/or parametric excitations of Gaussian white noise [13], and
combined harmonic and white noise [30] have been developed. In
the present paper, the method is extended to the case of strongly
non-linear system with fractional derivative damping under
bounded noise excitation.
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Consider a strongly non-linear oscillator with small fractional
derivative damping under bounded noise excitation. The equation
of motion is of the form

€X ðtÞþeDaXðtÞþgðXÞ ¼ ef ðX, _X ÞxðtÞ ð1Þ

where X is displacement; ‘ � ’ denotes the derivative with respect to
time t; e is a small positive parameter; eDaX(t) denotes small
fractional derivative damping; g(X) represents a strongly
non-linear restoring force; ef (X, _X ) denotes the amplitude of
excitation; and x(t) is a bounded noise. There are many defini-
tions for fractional derivatives [1]. Herein, the following
Riemann–Liouville definition is adopted:

DaXðtÞ ¼
1

Gð1�aÞ
d

dt

Z t

0

Xðt�tÞ
ta

dt, 0oar1 ð2Þ

where G(�) is a gamma function.
The bounded noise is of the form

xðtÞ ¼ cosðOtþsBðtÞþwÞ: ð3Þ

where O and s2 are constants representing center frequency and
strength of frequency perturbation, respectively. B(t) is standard
Wiener process and w is random phase uniformly distributed in
[0, 2p]. The spectral density of x(t) can be found as

SðoÞ ¼ s2

4p
o2þO2

þs4=4

ðo2�O2
�s4=4Þ2þs4o2

ð4Þ

Its auto correlation function is

RðtÞ ¼ 1

2
exp �

s2

2
9t9

� �
cosOt ð5Þ

and its probability density is

pðxÞ ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

q ð6Þ

It is obviously that x(t) is non-Gaussian. The bandwidth of
process x(t) depends mainly on parameter s. It is a narrow-band
process when s is small and a wide-band process when s is large.
As s approaches infinite, the bounded noise becomes a white
noise with constant spectral density. Conversely, as s approaches
zero, the bounded noise becomes a sinusoidal function with
random phase.

The non-linear conservative oscillator associated with system
(1) is

€xðtÞþgðxÞ ¼ 0 ð7Þ

Assume that Eq. (7) has a family of periodic solutions in domain U

around the origin of the phase plane ðx, _xÞ. The periodic solutions
can be expressed as

xðtÞ ¼ acosyðtÞ ð8Þ

_xðtÞ ¼�auða,yÞsinyðtÞ ð9Þ

where

yðtÞ ¼jðtÞþg ð10Þ

uða,yÞ ¼
dj
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½VðaÞ�VðacosyÞ�

a2 sin2y

s
: ð11Þ

here a is constant determined by potential energy

VðxÞ ¼

Z x

0
gðuÞdu ð12Þ

and total energy

H¼
1

2
_x2
þVðxÞ ð13Þ

as follows:

VðaÞ ¼ Vð�aÞ ¼H ð14Þ

cos y(t) and sin y(t) are the so-called generalized harmonic func-
tions. a, u (a,y), and g denote the amplitude, instantaneous
frequency and initial phase angle, respectively, of the oscillator.

Expand u into Fourier series

uða,yÞ ¼ C0ðaÞþ
X1
n ¼ 1

CnðaÞcosny ð15Þ

Integrating Eq. (15) with respect to y from 0 to 2p leads to the
following approximate averaged frequency:

oðaÞ ¼ 1

2p

Z 2p

0
uða,yÞdy¼ C0ðaÞ ð16Þ

of the oscillator. Then, y (t) in (10) can be approximated as

yðtÞ �oðaÞtþg ð17Þ

when e is small, the solution to Eq. (1) is assumed of the following
form:

Q ðtÞ ¼ XðtÞ ¼ AcosYðtÞ

PðtÞ ¼ _X ðtÞ ¼�AuðA,YÞsinYðtÞ ð18Þ

where

YðtÞ ¼FðtÞþGðtÞ ð19Þ

uðA,YÞ ¼
dF
dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½VðAÞ�VðAcosFÞ�

A2 sin2F

s
ð20Þ

in which A, Y, F, and G are all random processes, A is related to H

in a similar way as Eq. (14). Treating Eq. (18) as a generalized
van der Pol transformation from X, _X to A, G, one can obtain
the following equations for the amplitude A and the phase
angle G:

dA

dt
¼ e F11ðA,YÞþF12ðA,Y,OtþLÞ½ �

dG
dt
¼ e F21ðA,YÞþF22ðA,Y,OtþLÞ½ � ð21Þ

where

L¼ sBðtÞþw

F11 ¼
AusinY

gðAÞ
DaðAcosYÞ

F21 ¼
ucosY

gðAÞ
DaðAcosYÞ

F12 ¼�
AusinY

gðAÞ
f ðAcosY,�AusinYÞcosðOtþLÞ

F22 ¼�
�ucosY

gðAÞ
f ðAcosY,�AusinYÞcosðOtþLÞ: ð22Þ

For narrow-band excitation, resonant case is more interesting.
Assumed that s is small and

O
oðAÞ

¼
q

p
þed ð23Þ

where p and q are relatively prime small positive integers and d is
a detuning parameter.

Multiplying Eq. (23) by t and using approximate relations
(17) and (19), we obtain:

Ot¼
q

p
YþedF� q

p
G ð24Þ

Introduce a new variable

D¼ edF� q

p
GþL ð25Þ
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