
Firing synchronization of learning neuronal networks with
small-world connectivity

F. Han a,n, Q.S. Lu b, M. Wiercigroch c, J.A. Fang a, Z.J. Wang a

a College of Information Science and Technology, Donghua University, Shanghai 201620, PR China
b Department of Dynamics and Control, Beihang University, Beijing 100191, PR China
c Centre for Applied Dynamics Research, University of Aberdeen, Aberdeen AB24 3UE, UK

a r t i c l e i n f o

Available online 8 September 2011

Keywords:

Firing rate

Synchronization

Learning

Neuronal networks

Small-world

a b s t r a c t

The properties of firing synchronization of learning neuronal networks, electrically and chemically

coupled ones, with small-world connectivity are studied. First, the variation properties of synaptic

weights are examined. Next the effects of the synaptic learning rate on the properties of firing rate and

synchronization are investigated. The influences of the coupling strength and the shortcut probability

on synchronization are also explored. It is shown that synaptic learning suppresses over-excitement for

the networks, helps synchronization for the electrically coupled neuronal network but destroys

synchronization for the chemically coupled one. Both introducing shortcuts and increasing the coupling

strength are helpful in improving synchronization of the neuronal networks. The spatio-temporal

patterns illustrate and confirm the above results.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A human brain is composed of 1011 neurons, and each neuron
in the cortex connects to more than 10,000 neurons via
synapses [1]. Such a number of neurons and synapses constitute
a very huge and complicated network. The findings of small-
world connectivity [2] in some biological neuronal networks [3,4]
support a conjecture that the brain has small-world structure. In
the recent years many researches have been undertaken on small-
world neuronal networks, e.g. [5–7].

Coupled neurons in a human brain exhibit various dynamical
activities [8]. It is believed that studying these dynamical proper-
ties is instructive for exploring working mechanisms of a human
brain. Lu et al. [9] reviewed the recent study of dynamics of
neuronal firing activities and discussed various experimental and
theoretical findings. Among such many dynamical phenomena,
synchronous firing of neurons is thought to play a key role in
information communication in neuronal systems. Many investi-
gations were devoted to the study of synchronization of neuronal
networks. Masuda and Aihara [10] studied global and local
synchronization of pulse-coupled leaky integrate-and-fire neu-
rons in small-world networks. It was found that the parameter of
rewiring probability could transform the states of the networks

from precise local synchrony into rough global synchrony, and the
interactions between the global connections and the local clus-
tering forced synchronization of distant neuronal groups, which
were receiving coherent inputs. Kitajima and Kurths [11] inves-
tigated the effect of noise on synchronization of a globally
coupled neuronal network with external inputs. It was shown
that small noise could improve synchronization of neural sys-
tems. Wang et al. [12] investigated ordered bursting synchroniza-
tion of a chemically coupled neuronal network with ring
structure, and found that the system could achieve ordered
bursting synchronization by increasing the coupling strength
and bursting synchronization could transform into spike synchro-
nization under certain noise intensity.

However, most of the researches on neuronal networks are
focused on the above mentioned aspects without learning,
namely, the weights of synapses keep constant, which are
plausible in real situations. In biological neuronal networks, the
weights of synapses keep changing in the growth of cells and in
the studying and memorizing processes of brain. This property is
called synaptic plasticity. It has been commonly accepted that
synaptic plasticity is the main mechanism of learning in human
brain and plays an important role in some physiological or
pathological processes such as regulation of cardiovascular sys-
tem. For simulating synaptic plasticity in neural systems, many
simplified learning rules, such as the Hebbian learning rule, the
Oja rule, the STDP (spike-timing-dependent plasticity) rule and
others [13], are proposed in artificial neural networks. There has
been some researches on dynamics of neural systems with
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learning synapses. Zhigulin et al. [14] investigated the effects of
spike-timing-dependent plasticity (STDP) on synchronization of
two coupled neurons and found that the plasticity expanded the
range of frequency locking and made synchronization faster. Kube
et al. [15] applied STDP rule in a small-world neuronal network
and found that the rule made the network less synchronous. It
was also found that network with a large shortcut probability is
robust to the introduction of shortcuts and the resulting distribu-
tion of the synaptic weights in single neurons had depended both
on the global statistics of firing dynamics and on the number of
incoming and outgoing connections.

This paper aims to explore the properties of firing synchroni-
zation in learning small-world neuronal networks. We apply a
learning rule in electrically coupled and chemically coupled
neuronal networks, respectively, and study the effects of various
parameters on the properties of firing rates and synchronization
of networks. This paper is organized as follows. Section 2
introduces the mathematical models of the learning small-world
Hindmarsh–Rose neuronal networks. Section 3 presents the
simulation results for firing rate and synchronization of electri-
cally and chemically coupled neuronal networks. The conclusions
are given in Section 4.

2. The neuronal models

Dynamics of real neurons are usually described by firing
activities of neuronal models. The Hindmarsh–Rose (HR) neuronal
model [16,17] is adopted in this paper as a typical example of real
neurons, which can be expressed by the following equations:

_x ¼ y�ax3þbx2�zþ I,

_y ¼ c�dx2�y,

_z ¼ r½sðx�wÞ�z�, ð1Þ

where x is the membrane potential, y is associated with the fast
current of the Naþ or Kþ ions, z is associated with the slow
current of, for example, the Ca2þ ions, I is the stimulus current,
which is delivered to the neuron from its external environment.
The parameters are chosen as a¼1, b¼3, c¼1, d¼5, s¼4,
r¼0.006, w¼�1.6 and I¼3, under which HR neuronal model
exhibits a multiple time-scale chaotic bursting behavior, as
shown in Fig. 1.

Assuming a HR neuron as a node, Newman–Watts (NW)
strategy [18,19] is adopted to construct small-world neuronal
networks. NW small-world strategy works like this: we start with

a ring of N neurons in which each neuron coupled to its k nearest
neighbors, then we add shortcuts between pairs of neurons with
shortcut probability p where pA(0, 1). As special cases, for p¼0
we have the original regular network, or for p¼1 a globally
coupled network. The overall number of neurons is set as N¼100,
k¼8 in this paper. The formation of a small-world neuronal
network is presented in Fig. 2, where the nodes denote neurons
and the connections denote synapses. Based on the network
structure, a connectivity matrix G¼{gij}N�N can be defined. If
neuron i is connected with neuron j(ia j), then gij¼1, otherwise,
gij¼0. As the connections are symmetric, the coupling matrix G
has the following properties: (1) G is a symmetric and irreducible
matrix. (2) The off-diagonal elements gij(ia j) of G are either 1 or 0.

(3) The diagonal elements gii ¼�
PN

j ¼ 1,ja i gij. (4) The eigenvalues

of G satisfy 0¼g04g1Z?ZgN�1.
As mentioned earlier there are two types of synapses in

nervous systems, electrical synapses and chemical synapses. In
an electrical synapse, the presynaptic and postsynaptic cell
membranes are connected by channels that are capable of passing
electrical currents, causing voltage changes in the presynaptic cell
to induce voltage changes in the postsynaptic cell. Electrical
synapses can be described as linearly proportional to the potential
difference between pre and postsynaptic neurons and the accord-
ing coupling function of two neurons is presented as
f(xi,xj)¼xj�xi, where i and j denote the pre and post neurons,
respectively, xi and xj are the membrane potentials of the two
neurons, respectively.

In a chemical synapse, the presynaptic neuron releases a
chemical called a neurotransmitter that sticks to receptors
located in the postsynaptic cell and can affect the postsynaptic
cell in a wide variety of ways. Chemical synapses can be
excitatory or inhibitory, and usually they can be described as a
non-linear function [20], f(xi,xj)¼�(xi�Vx)G(xj), where Vs is the
reverse potential and set as Vs4xi(t) for any membrane potentials
xi to make all the synapses excitatory (in this paper Vs¼2, see
Fig. 1), G(xj)¼1/[1þexp{�l(xj�Ys)}], whose limit form is the
Heaviside step function and the value of the threshold Ys should
be set to a value to stimulate bursting of all neurons, which pass it
over (in this paper Ys¼�0.25, see Fig. 1).

Synapses can learn by themselves, which can be described by
changing the weights of synapses according to some learning
rules. We use a learning rule, which is a modification of the Oja
concept [21]. Oja learning rule is expressed as Dwij¼Lxi(xj�xiwij),
where Dwij denotes the change in the value of the weight wij

between neurons i and j, L denotes learning rate of synapses, and
xi and xj have the same meanings as stated above. This rule can
make a neural network to lose stability [22]; hence we modify the
Oja rule by applying a non-linear scale-limited function
f(x)¼arctan(x). The modified learning rule is expressed as follows:

Dwij ¼ Larctan½xiðxj�xiwijÞ�, ð2Þ
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Fig. 1. Membrane potential of the HR neuronal model (with two thresholds used

for modeling chemical synapses).

Fig. 2. From regular neuronal network (left) to NW small-world neuronal network

(right).
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