
Efficient analysis of large-scale structural problems with
geometrical non-linearity

G.N. Labeas n, S.D. Belesis

Laboratory of Technology and Strength of Materials, Department of Mechanical Engineering and Aeronautics, University of Patras, 26500 Rion, Greece

a r t i c l e i n f o

Article history:

Received 2 September 2010

Received in revised form

19 January 2011

Accepted 5 May 2011
Available online 30 May 2011

Keywords:

Non-linear analysis

Finite element

Large-scale structures

Local non-linearity

Stiffness matrix

a b s t r a c t

The paper presents an efficient methodology for the analysis of large-scale structural problems with

geometrical non-linearity. A finite element based tool is developed, taking advantage of the analytical

formulation of the stiffness matrix of a beam element, which is explicitly separated in linear and non-

linear terms. The methodology proposes the substitution of the typical Newton-type non-linear

analysis procedure, by a series of incremental linear analyses and a set of ‘fictitious’ forces, replacing

the non-linear effect. The proposed technique is demonstrated in several structural problems that

exhibit geometrical non-linear behaviour, with satisfactory results. The method’s advantages on the

analysis of large-scale non-linear problems are discussed, as well as the limitations and the further

development that is required.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

One of the biggest challenges for the engineers, especially in
the aeronautics, marine and automotive sectors, is to design and
produce a reliable and cost-effective structure in a fast and
efficient way. The design, analysis and certification process of a
new product involves a great number of structural tests, which
are performed in parallel with respective structural analysis; the
requirements in complexity and size vary from the simple coupon
level to the full-scale level. It is worth mentioning, that if testing
could be reduced, based on a validated and safe Virtual Testing
(numerical analysis) process, a reduction of 30–40% of component
tests and consequently certification costs and a reduction of
20–30% of structural certification duration and thus time-to-
market of a new product could be realized [1,2].

In order for these expectations to be fulfilled, advances in
numerical analysis methodologies should be developed; this would
enable the precise prediction of structural behaviour of large-scale
components with high degree of complexity by taking into account
the local non-linear behaviour, which is crucial for damage initia-
tion and progression. A successful numerical model of this kind
would possibly render the replacement of some tests by simulation
at the component scale a feasible action, leading to great saving in
the cost of large scale components, e.g. a new aircraft. Similar

conclusion may be drawn for other typical large-scale structures,
such as boats, cars, civil engineering constructions, etc.

Nowadays, there are many different approaches to the pro-
blem of large scale numerical simulation, basically based on
large-scale Finite Element (FE) models of high degree of complex-
ity. However, presently, existing finite element software capabil-
ities are too limited for satisfying the simultaneous demand for
non-linear analysis with millions of Degrees of Freedom (DOFs).
Despite the constant increase of computing capabilities, allowing
users to solve larger-scale problems in less time, there is a parallel
tendency, focusing in the efficient use of shared-memory multi-
processors. The main idea behind this method is the distribution
of the computing ‘effort’ to different parallel remote processors,
by supervising the exchange of data, as well as the priority of
procedures [2,3]. The above method is capable of solving non-
linear problems with good results [4], but its level of effectiveness
depends mainly on the number of available CPU resources.

Another generic approach to the analysis of large scale FE
models is the submodelling technique, i.e. condensing the mesh
of the model at the areas of interest, which are considered to be
critical, either at the design phase or during the solution phase,
e.g. by application of the adaptive meshing techniques [5], or
mesh superposition approaches [6]. An interesting approach to
the submodelling technique has been developed within the
EU Project MUSCA [1], by proposing an alternative scheme for
global–local solution via splitting the model into separate parts
and incorporating different sub-meshes for crucial parts of a large
structure. Furthermore, a series of researches have been con-
ducted focusing in improving the efficiency of FE models [7], by
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refining the mesh of the whole model (h-version) [8–10] or by
increasing the degree of the elements (p-version) [11–17], during
the convergence detection procedure. Although in numerous
studies the submodelling technique has been applied, currently
it is not compatible with non-linear problems.

There are also a number of promising methods, grouped under
the category substructuring, e.g. [18–20], including Finite Element
Tearing and Interconnecting (FETI) [21,22] and Balanced Domain
Decomposition (BDD) [21,22]. Taking advantage of the division of
the model in areas and subsequently solving each of them, they
aim in developing an ‘intelligent’ pattern for spending the
computer resources. To overcome this limitation, an improved
BDD methodology dealing with non-linear localization technique
has been proposed within the European Project MUSCA frame-
work [1], by Cresta et al. [23].

It is also worth mentioning, that most of the researchers’ effort
in coping with large scale numerical problems has been expended
in improving the efficiency of the classical FE method, by two
main approaches, depending on the part of the analysis under
consideration. The first category seeks the most efficient formula-
tion for the non-linear finite element equations and includes the
total Lagrangian [24–30], the updated Lagrangian [28,29], the
Eulerian (mainly used for the fluid mechanics analyses) and
the co-rotational formulations [24,31–33]. The second category
involves the search of the most efficient solution scheme of the
non-linear problem [34] and namely includes the Newton–
Rahpson method, the displacement control method [35–37], the
work control method [38,39], the arc-length method [40–48]
and the minimum residual displacement [45]. A comprehensive
review of the above mentioned common numerical methods has
been presented by Clarke and Hancock [46] and Chen and Lui
[47]. Although excessive work has been carried out with great
results on some occasions, the problem of solving non-linear
problems in such a large scale persists.

In the present paper, with the aim to overcome the above
difficulties and provide a partial solution to the problem of
efficient large-scale non-linear analysis for the case of geometrical
non-linearity, a finite element based tool for fast, efficient and user
friendly analysis is developed. Considering the iterative-incre-
mental linearised nature of all the classical solutions coping with
non-linear analyses, a novel technique is proposed, consisting
of incremental linear only analyses, in which fictitious forces
are applied, in order to substitute the non-linear effect at each
increment. This is accomplished by formulating the stiffness
matrix in such a way, that the linear terms are explicitly separated
from the non-linear terms, with the latter representing the
provenance of the fictitious forces mentioned above. For the sake
of simplicity, the stiffness matrix formulation is developed for a
typical finite beam element, but with the proper adaptations may
treat all type of elements. The main innovation deals with solving
the non-linear problem with a sequence of linear solutions leading
to a significant computational cost saving. The proposed metho-
dology is demonstrated in the case of two-dimensional beam
finite element models, but it can be extended to three-dimensions
and to most of the other types of finite element analysis. Different
non-linear problems are presented for demonstration purposes,
in comparison with analytical, experimental and available finite
element results from other authors. The limitations, as well as, the
perspectives of the proposed methodology are discussed.

2. Derivation of stiffness matrix and load vector of a beam
finite element with geometrical non-linearity

In general, structural non-linearity may arise either from
geometrical non-linearity (e.g. large deflections, large strains,

contact) or material non-linearity (e.g. elastic–plastic material
behaviour, damage progression, etc.). The proposed methodology
tackles the issue of geometrical non-linearity, but with proper
adaptations may treat material non-linearity as well. Furthermore,
the finite element implementation is demonstrated in the case of a
beam as a basic element, taking advantage of its convenience in
describing the geometrical non-linearity by analytical formulas,
compared to more complicated shell or solid elements. The
method is applied on typical problems of framed structures, in
order to assess its efficiency.

2.1. Basic assumptions and governing equations of a beam subjected

to non-linear bending

A beam is a structural member with length to cross-sectional
dimensions ratio higher than ten and it undergoes stretching
along its length and bending about an axis transverse to the
length, as shown in Fig. 1. A right-handed Cartesian coordinate
system (x, y, z) is chosen in such a way that x-axis coincides with
the beam axis passing through the centroid of each cross-section.
The coordinate axes y and z are the principal inertial axes of the
cross-section.

The Euler–Bernoulli assumptions are adopted for the present
formulation. For simplicity reasons, only the extensional-bending
problem of a beam with large deflections and small strain in the
two-dimensional domain (x, z) is considered, while the torsional
problem is not taken into account in the present formulations.
Using the non-linear strain–displacement relations [49] and
omitting the large strain terms of higher order than square, the
axial strain is written as in Eq. (1), while all other strains are zero
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The symbols (u, v, w) denote the total displacements along the
coordinate directions (x, y, z), respectively, while u0 and w0 denote
the axial and transverse displacements of a point on the beam
neutral axis.

Provided that the final goal of the present derivation is to
achieve a stiffness matrix, in which the linear and the non-linear
components are explicitly separated, the total strain in Eq. (1) is
dissociated in two distinct parts, namely the linear exL and the
non-linear part exNL, as follows:

ex ¼ exLþexNL
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Before proceeding with the non-linear beam implementation,
a typical beam finite element is considered, as shown in Fig. 2.
The above mentioned element has two nodes and three Degrees
of Freedom (DOFs), namely u, w, and y at each node.

Following the finite element approximation, a displacement
assumption within the element is performed, which gives the
displacement at any point as a combination of the displacements

Fig. 1. Schematic of a typical beam configuration.

G.N. Labeas, S.D. Belesis / International Journal of Non-Linear Mechanics 46 (2011) 1283–12921284



Download English Version:

https://daneshyari.com/en/article/785714

Download Persian Version:

https://daneshyari.com/article/785714

Daneshyari.com

https://daneshyari.com/en/article/785714
https://daneshyari.com/article/785714
https://daneshyari.com

