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a b s t r a c t

In the present study, the concept of the Output Frequency Response Function (OFRF), recently proposed

by the authors, is applied to theoretically investigate the force transmissibility of MDOF structures with

a cubic non-linear viscous damping device. The results analytically show that the introduction of cubic

non-linear damping can significantly reduce the transmissibility over all resonance regions for a

Multiple Degree of Freedom (MDOF) structure and at the same time leave the transmissibility over the

isolation region virtually unaffected. The analysis also indicates that a strong linear damping may shift

the system resonances and compromise the beneficial effects of cubic non-linear viscous damping on

the force transmissibility of MDOF structures. This suggests that a less significant linear damping

together with a strong cubic non-linear damping can be used in MDOF structures to achieve a desired

vibration isolation performance. This research work has a significant implication for the design of

viscously damped MDOF structures for a wide range of practical applications.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Vibration isolation is an effective method of reducing the trans-
mission of vibration energy so as to protect equipment or structures
from vibration disturbances [1]. Generally speaking, vibration isola-
tion systems fall into two categories: passive and active [2], and
passive isolation systems can be either linear or non-linear. The
design of isolation systems always presents a challenge to mechan-
ical engineers because various criteria and indices have to be
considered in practice. For linear isolation systems, which have been
widely studied in the literature, the isolation criteria and indices can
often be explicitly expressed in term of the design parameters, such
as damping and stiffness coefficients. This greatly facilitates the
design process so that an optimal design of linear isolation systems
can be achieved relatively easily. For example, Soliman and Ismail-
zadeh [3] analytically derived the relationship between the trans-
missibility and the mass, stiffness, and damping ratios for linear
isolators to explicitly relate the system resonant characteristics to
these parameters. Most recently, various powerful optimization
techniques such as the recursive quadratic programming (RQP)
technique [4], the sequential quadratic programming (SQP) techni-
que [5] and genetic algorithms (GA) [6] have been applied to design

linear isolation systems to achieve a better isolation performance.
However, the design of non-linear isolation systems is much more
complicated and is still a difficult challenge. The difficulty is that the
analysis of non-linear systems is much more complicated, per se,
since a closed-form analytic solution to non-linear differential
equations is possible only for a limited number of special classes of
non-linear differential equations [7]. Usually, researchers have to
simplify the non-linear systems analysis by resorting to Single
Degree of Freedom (SDOF) or low dimensional models. However,
even with simplified models, the analysis of non-linear systems is
still not an easy task. For the study of non-linear vibration isolation
systems, an immediate difficulty is that it is hard to derive an explicit
analytical description for the relationship between the system
non-linear characteristic parameters and the transmissibility. As a
result, most research effort has been focused on the analysis of
relatively simple SDOF and 2-DOF non-linear isolators. In addition,
for some non-linear vibration systems, the difficulties in analysis and
design are also due to individualistic behaviors such as dependence
on initial condition or energy and possible existence of multiple
solutions and bifurcation phenomena. A very comprehensive survey
about the recent developments of non-linear vibration isolators has
been contributed by Ibrahim [8], in which many cited studies [9–16]
have revealed that the introduction of non-linear damping and
stiffness are really of great benefit in vibration isolation.

Although the design of linear isolation systems is relatively
easier than the design of non-linear isolation systems, there is a
well-known dilemma associated with viscously damped linear
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isolation systems. That is, when the linear viscous damping level
is increased to reduce the transmissibility in the resonant regions,
the transmissibility is increased in the isolation region where
isolation is required. Most recently, by using the concept of
Output Frequency Response Function (OFRF) [17,18], the authors
[19] have analytically revealed that, for SDOF vibration isolators, a
cubic non-linear viscous damping characteristic can produce an
ideal vibration isolation such that only transmissibility over the
resonant frequency region is reduced by the non-linear damping
while the transmissibility over non-resonant frequency ranges is
virtually unaffected. Therefore, by introducing cubic non-linear
viscous damping to SDOF vibration isolators the dilemma or
compromise associated with linear viscous damping isolators
can be overcome. In the present study, these results are extended
to investigate the force transmissibility of MDOF structures with a
cubic non-linear damping device. The analysis theoretically
proves that the introduction of a cubic non-linear viscous damping
characteristic can significantly reduce the transmissibility around
all resonant frequencies of MDOF structures but have virtually no
effect on the transmissibility over the non-resonant frequency
regions. Numerical simulation studies are carried out to verify the
theoretical analysis and demonstrate the considerable engineering
significance of the conclusions reached in this study. The revelation
that a MDOF isolator with a cubic non-linear viscous damping
characteristic possesses ideal vibration isolation properties provides
an important foundation for the development of novel passive
or semi-active solutions to vibration isolation problems of MDOF
structural systems.

2. MDOF structures with a non-linear viscous damping
characteristic

2.1. Governing motion equations

Consider a MDOF structure with a cubic non-linear viscous
damping characteristic located at the degree of freedom at the
bottom of the structure as shown in Fig. 1, where

f ðtÞ ¼ AsinðOtÞ ð1Þ

is the harmonic force acting on the Jth mass with frequency O and
magnitude A, fout(t) is the force transmitted to the supporting
base, and xi(t) is the displacement of mass i (i¼1, y, n). The
damping force associated with the degree of freedom at the
bottom of the structure is described by

fNL ¼ c1 _x1þr3 _x
3
1 ð2Þ

where r3 is the cubic non-linear damping characteristic para-
meter. The governing equations of the MDOF structure can be
written in the following matrix form

M €xþC _xþKxþFN ¼ FðtÞ ð3Þ

where
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are the system mass, damping and stiffness matrix, respectively,
and

x¼ ðx1, . . ., xnÞ
0, FðtÞ ¼ ð0,. . .,0

zfflfflffl}|fflfflffl{J�1

,f ðtÞ,0, . . ., 0Þ0, and

FN ¼ ðr3 _x
3
1 0, . . ., 0Þ0

In this study, the damping matrix C is assumed to be propor-
tional to the stiffness matrix K, e.g., C¼mK where m is the
damping ratio. The force transmitted to the supporting base fout(t)
can be evaluated as follows,

foutðtÞ ¼ k1x1þc1 _x1þr3 _x
3
1 ð4Þ

Denote y¼(y1, y, yn)
0

and x¼Fy where

F¼

F11 . . . F1n

^ & ^

Fn1 . . . Fnn

0
B@

1
CA ð5Þ

is the mode shape matrix [20], which is generated by solving the
following eigenvalue problem

ðK�o2MÞF¼ 0 ð6Þ

where o denotes the eigenvalue of the system.
Multiplying Eq. (3) by FT and then replacing x with Fy yields

FT MF €yþFT CF _yþFT KFyþFT FN ¼FT FðtÞ ð7Þ

mn

kn

mn-1

m1

k1

x1

xn-1

xn

c1, r3

cn

f(t)

mJ
xJ

fout(t)

Fig. 1. MDOF structure on a support base with a cubic non-linear damping.
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