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a b s t r a c t

Receding contacts are a class of contacts that have received little attention. The first studies carried out
on the subject have shown that the area of contact decreases as a load is applied and is load independent.
The simple plane problem of an elastic layer pressed onto an elastically similar half space by a line force
is studied here. The problem is solved for several coefficients of friction using distributions of edge
dislocations. The extent of the stick and the slip zones are found and the lift-off angle of the strip is
estimated from the resulting tractions distribution.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Receding contacts constitute an important class of contact pro-
blems whose properties are only partly understood. Although the
first studies were carried out by Keer et al. [6], Tsai et al. [9] and
Dundurs [3] 40 years ago, they have still received comparatively little
attention even though most ‘high strength friction grip’ connections
(to use the nomenclature employed in civil engineering) are of this
type. El-Borgi et al. [4] studied the case of frictionless contact
between a layer and a homogeneous substrate while Ahn and Barber
[1] recently studied a similar contact problem under cyclic loading.
In particular we would like to understand the frictional damping
properties, final contact size and contact pressure distribution.

A simple plane problem is an elastic layer resting on an
elastically similar half-plane, and where an applied contact pressure
is exerted which stops short of the ends of the strip. In the extreme
case, we may think of the contact pressure being reduced to a ‘knife
edge’, Fig. 1, and the layer as being infinitely long. This geometry is
very attractive as a candidate for study, because the only length
dimension in the problem, as shown, is the thickness of the layer, c,
so that, together with the interfacial coefficient of friction, f, these
constitute the only independent variables in the problem, and
therefore a comprehensive solution should be possible, revealing
some basic properties. We start by assuming that the layer and the
substrate are in intimate contact, that the coefficient of friction is

sufficient to prevent all slip, and that the contact pressure along the
interface is compressive everywhere, so that the substrate and the
layer combined constitute a homogeneous elastic monolithic half-
plane. Note that (for reasons which will become clear) we set up
axes centred on the substrate/layer interface. The application of a
normal force, P, at the point ð0; cÞ induces the following contact
pressure pðx;0Þ and shear tractions qðx;0Þ [7], represented in Fig. 2:

pðx;0Þ ¼ �2P
πc

c4

ðc2þx2Þ2
ð1Þ

qðx;0Þ ¼ 2P
πc

xc3

ðc2þx2Þ2
: ð2Þ

We see that this ‘bilateral’ solution predicts closure everywhere and
an extent of slip given by f¼x/c, i.e. over the semi-infinite lines
fcr jxjr1. Thus, an infinitely high coefficient of friction is required
to ensure stick everywhere, and if this is achieved the contacting
pair will not open. If the coefficient of friction is finite we expect
slip over the intervals ar jxjr1, where a is to be found, and
anticipating properties of the solution to be revealed that this will
also cause opening over the interval br jxjr1, where, again, b is
to be found. The method we propose to adopt is to arrange
distributions of edge dislocations along the interface line to restore
conventional bilateral (Signorini) contact inequalities.

2. Formulation

Following Schmueser et al. [8] and Comninou et al. [2], we
assume that the half-plane yoc contains an array of dislocations.
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The state of stress induced by a dislocation with Burgers vector
(bx; by) located at point ðξ;0Þ is given by

sxyðx;0Þ
syyðx;0Þ

( )
¼ 2μ
πðκþ1Þ

1
x�ξþGxxyðx; ξÞ Gyxyðx;ξÞ

Gxyyðx;ξÞ 1
x�ξþGyyyðx; ξÞ

2
4

3
5 bxðξ;0Þ

byðξ;0Þ

( )

ð3Þ
where we have separated out the regular terms, Gijkðx; ξÞ, which are
given in Appendix A, and account for the presence of the free surface,
μ is the modulus of rigidity, and κ is Kolosov's constant. We know the
tractions pðxÞ and qðxÞ arising along the line y¼0 induced by the
applied load, and can therefore write down the total tractions NðxÞ
and SðxÞ (normal and shear, respectively) present along this line as

NðxÞ ¼ pðxÞþ 2μ
πðκþ1Þ
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SðxÞ ¼ qðxÞþ 2μ
πðκþ1Þ
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where BiðξÞ ¼ dbi=dξ; i¼ x; y are the dislocation densities. The first
step in simplification of the integrals is to exploit the inherent

symmetry and anti-symmetry of the influence functions for the
dislocations, so that

bxðξÞ ¼ �bxðξÞ or BxðξÞ ¼ BxðξÞ ð6Þ

byðξÞ ¼ byðξÞ or ByðξÞ ¼ �ByðξÞ ð7Þ
and the corrective terms in the kernels having the following proper-
ties:

Gyyyð�x; �ξÞ ¼ �Gyyyðx; ξÞ ð8Þ

Gxyyð�x; �ξÞ ¼ Gxyyðx; ξÞ ð9Þ

Gxxyð�x; �ξÞ ¼ �Gxxyðx; ξÞ ð10Þ

Gyxyð�x; �ξÞ ¼ Gyxyðx; ξÞ; ð11Þ
so that we may now write
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where

Fyyyðx; ξÞ � � 1
xþξ

þGyyyðx; ξÞ�Gyyyðx; �ξÞ ð14Þ

Fxyyðx;ξÞ � Gxyyðx; ξÞþGxyyðx; �ξÞ ð15Þ

Fxxyðx; ξÞ �
1

xþξ
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Fyxyðx;ξÞ � Gyxyðx; ξÞ�Gyxyðx; �ξÞ: ð17Þ
The next step is to write down the Signorini conditions for the
contact, where we have chosen the appropriate sign for the shear
traction to make it consistent with the underlying shear caused by
the applied load:

NðxÞ ¼ 0; brxo1 ð18Þ

SðxÞ ¼ �signðxÞ fNðxÞ; arxo1 ð19Þ
We note that the interval over which we impose the first of these
conditions is precisely the same as the range of the singular integral
for the climb dislocations (ByðξÞ), so that
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In Eq. (20) there is a solitary Cauchy integral, over the range
brxo1, and this is the same as the interval over which it is
imposed. We need to re-examine the second condition and re-cast it
in the form

SðxÞ ¼ �Hðb� ∣x∣Þ signðxÞ fNðxÞ; arxo1 ð21Þ
to ensure that the range over which this is imposed and the interval
of the singular integral are the same, giving
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Fig. 1. Geometry of the problem.
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Fig. 2. Contact pressure and shear tractions at (x,0) generated by a normal force P.
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