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a b s t r a c t

In this paper, the analysis of vibration and aeroelastic properties of ordered and disordered two-span
panels is carried out. The equation of motion of each sub-panel of the two spans is formulated using
Hamilton's principle. Supersonic piston theory is applied to evaluate the unsteady aerodynamic pressure.
The partial differential equation of motion of the two-span panel is solved, and the mode shapes of the
panels with and without aerodynamic pressure are obtained. The free vibration behaviors of the two-
span panel are analyzed. Time-domain responses of the panel are computed by the mode superposition
method using the mode shapes obtained previously. It is noted from the free vibration analysis that the
vibration localization will happen on the disordered two-span panel. Aeroelastic analyses of ordered and
disordered two-span panels are also carried out through the frequency-domain method. Characteristics
of the aeroelastic stability and fluttering mode of the disordered two-span panel are analyzed. Simulation
results show that the disorder of the two-span panel will decrease the critical flutter aerodynamic
pressure of the structural system. The influences of the disorder degree on the vibration localization and
the flutter bound of the two-span panel are investigated. The present results are useful for the analysis
and design of the multi-span structures.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-span structures are usually used in the architectural and
mechanical industries. For example, the long bridge and the
surface of the aircraft can all be modeled as the multi-span beams
or plates. The vibration behaviors of multi-span structures have
drawn a lot of attentions of researchers. Veletsos and Newmark [1]
were the first two researchers to investigate the vibration of plates
with internal line supports. Xiang et al. [2] studied the vibration
performances of multi-span rectangular plates applying the Levy
method. Lv et al. [3] analyzed the exact solution of the free
vibration of long-span continuous rectangular plates using the
classical Kirchhoff plate theory. Li et al. [4] researched the wave
localization in disordered periodic multi-span rib-stiffened plates
applying the elastic dynamics theory. Li and Wang [5] studied the
wave propagation and localization in randomly disordered peri-
odic multi-span beams on elastic foundations. Cheung et al. [6]
investigated the vibration of a multi-span non-uniform bridge
subjected to a moving vehicle using the modified beam vibration

mode functions as the assumed modes. Li et al. [7] researched the
buckling mode localization in the periodic multi-span beam with
disorder occurring in an arbitrary single span.

Xu and Huang [8] introduced a new random wave reflector in
the transverse vibration and wave propagation control of an
infinite multi-span simply supported beam. Yesilce and Demirdag
[9] determined the exact solutions for the first five natural
frequencies and mode shapes of a Timoshenko multi-span beam
subjected to axial force. Golley and Petrolito [10] studied the
dynamical properties of orthotropic plates with internal supports
applying the finite strip element method. Kim and Dickinson [11]
analyzed the free vibration characteristics of multi-span plates
using a set of one-dimensional orthogonal polynomial functions.
Dickinson and Warburton [12] calculated the natural frequencies
of two-span plates using the edge effect method. Liew and Lam
[13] computed the natural frequencies of multi-span plates using
the orthogonally generated two-dimensional plate functions. Liew
et al. [14] investigated the vibration behaviors of rectangular
Mindlin plates with internal line supports either in parallel or in
diagonal direction.

Flutter is one type of the self-excited oscillation. It is a subject
which is mainly concentrated on the coupling effects of the
aerodynamic load, elastic force and inertia force of the structure.
Panel flutter as one kind of the flutter can be generated when a
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panel is exposed to airflow along its surface. A large amount of
literatures have studied the characteristics of the panel flutter.
Tubaldi et al. [15] researched the nonlinear vibration behaviors of
thin infinitely long rectangular plates subjected to axial flow. The
influences of the flow velocities were researched. Guo and Mei
[16] studied the nonlinear flutter properties of panels with
temperature change using the aeroelastic modes instead of the
traditional natural modes in vacuo. Abbas et al. [17] investigated
the effect of the system parameters on the flutter of a curved skin
panel in supersonic and hypersonic flows. Kouchakzadeh et al. [18]
conducted the panel flutter analysis of general laminated compo-
site panels based on Galerkin's method. Zhou et al. [19] studied the
flutter characteristics of nonlinear composite panels considering
the thermal effect using the finite element method (FEM). Vede-
neev [20] conducted a comprehensive numerical investigation of
single mode flutter to determine the flutter boundaries and their
transformations due to the parameter changes. Koo and Hwang
[21] performed a study of flutter characteristics for composite
panels with structural damping using the FEM. In recent years, we
have studied the aeroelastic and aerothermoelastic characteristics
of composite laminated panels and the active flutter and thermal
buckling control of these structures [22–24].

Based on the above analysis, it is noted that although many
literatures have studied the vibration behaviors of multi-span
structures, and the panel flutter has been deeply investigated by
a lot of researchers, few literatures have conducted the aeroelastic
analysis of multi-span structures in supersonic airflow. Moreover,
the vibrations and aeroelastic characteristics of disordered peri-
odic multi-span structures are also lack of investigations. Inspired
from these, vibrations and aeroelastic behaviors of ordered and
disordered two-span panels are investigated in this study. The
equation of motion of the two-span panel is formulated using
Hamilton's principle. Supersonic piston theory is applied to
evaluate the unsteady aerodynamic pressure. Mode shapes of the
two-span panels with and without aerodynamic pressure are
calculated. Time-domain responses of the panel are computed by
the mode superposition method using the mode shapes obtained
previously. Characteristics of the aeroelastic stability and fluttering
mode of the disordered two-span panel are analyzed, and the
influences of the disorder degree on the vibration localization and
flutter bound are investigated. Some interesting and novel results
are obtained.

2. Formulation for the equation of motion

Fig. 1 shows the schematic diagram of a two-span panel in the
supersonic flow. The local coordinate of each span is also displayed
in the figure. The lengths of the left and right spans in the x
direction are a1 and a2, respectively. The width and thickness of
each sub-panel are denoted by b and h. The free airflow is along
the x direction. It is to be pointed that the positive direction of the
x-axis is defined in the direction to the right for the left span, and
it is defined in the direction to the left for the right span [25].

The two sub-panels have the same thickness which is relatively
thin, so the Kirchhoff plate theory is applied in the structural
modeling, and it can be expressed as

u¼ �z
∂w
∂x

; v¼ �z
∂w
∂y

; w¼w; ð1Þ

where u, v and w are the in-plane and transverse displacements
along the x, y and z directions, and z is the coordinate in the z-axis.
The strain–displacement relation is given as

ε¼ z �∂2w
∂x2

�∂2w
∂y2

�2
∂2w
∂x∂y

" #T
¼ zκ; ð2Þ

where ε¼[εx, εy, εxy]T is the strain vector, and κ is the bending
curvature vector. The constitutive equation of each sub-panel is
expressed as r¼[sx, sy, τxy]T¼Qε, where Q is the stiffness co-
efficient matrix, in which Q11¼Q22¼E/(1–υ2), Q12¼Q21¼Eυ/(1–υ2)
and Q66¼E/[2(1þυ)], where E and υ are Young's modulus and
Poisson's ratio [26].

The equation of motion in each span for the two-span panel is
given by [27,28]

∂4wk

∂x4k
þ2

∂4wk

∂x2k∂y
2
þ∂4wk

∂y4
þρh

D
∂2wk

∂t2
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where ρ is the mass density of the panel, w1 and w2 define the
transverse displacements of the left and right sub-panels, and
D¼Eh3/[12(1–υ2)]. For the vibration analysis of the two-span
panel, the solution of Eq. (3) is assumed as wk¼Wk(xk, y) sin
(ωtþφ), whereWk(xk, y) is the mode shape of the sub-panel, and ω
and φ are the natural frequency and phase angle of the structure.
Substitution of the general solution into Eq. (3) yields the follow-
ing mode equation:

∂4Wk

∂x4k
þ2

∂4Wk

∂x2k∂y
2
þ∂4Wk

∂y4
�α4Wk ¼ 0; ðk¼ 1; 2Þ ð4Þ

where α4¼ω2ρh/D. As far as the fully simply supported two-span
panel is concerned, the mode shape Wk(xk, y) can be assumed as

Wkðxk; yÞ ¼ XkðxkÞ sin ðηnyÞ; ð5Þ
where ηn¼nπ/b, n is the number of half wave of the vibration
mode in the y direction, and X(x) is the mode shape in the x
direction. Substituting Eq. (5) into Eq. (4), the following equation
can be obtained:

∂4Xk

∂x4k
�2η2n

∂2Xk

∂x2k
þðη4n�α4ÞXk ¼ 0: ð6Þ

The characteristic equation of the above ordinary differential
equation is given as

β4n�2η2nβ
2
nþðη4n�α4Þ ¼ 0; ð7Þ

where the subscript “n” indicates that the eigenvalue β is asso-
ciated with the mode number n in the y direction. The solutions of
Eq. (7) can be calculated as

β1n ¼ 7 i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2�η2n

q
; β2n ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2þη2n

q
; ð8Þ

where i is the imaginary unit. Consequently, the mode shape of the
two-span panel can be expressed as

Wkðxk; yÞ ¼ ½Ak sin ðβ1nxkÞþBk cos ðβ1nxkÞþCk sinhðβ2nxkÞ
þDk coshðβ2nxkÞ� sin ðηnyÞ; ð9Þ

where Ak, Bk, Ck and Dk are the undetermined coefficients which
can be solved according to the boundary conditions of the
structure. For the fully simply supported two-span panel, its
boundary conditions are given as follows:

W1ð0; yÞ ¼ 0; Mx1ð0; yÞ ¼ 0; ð10aÞ

W1ða1; yÞ ¼ 0; W2ða2; yÞ ¼ 0; W1;x1 ða1; yÞ ¼ �W2;x2 ða2; yÞ;
Mx1ða1; yÞ ¼Mx2ða2; yÞ; ð10bÞ
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Fig. 1. The schematic diagram of a two-span panel in the supersonic flow.

Z.-G. Song, F.-M. Li / International Journal of Mechanical Sciences 81 (2014) 65–7266



Download English Version:

https://daneshyari.com/en/article/785731

Download Persian Version:

https://daneshyari.com/article/785731

Daneshyari.com

https://daneshyari.com/en/article/785731
https://daneshyari.com/article/785731
https://daneshyari.com

