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a b s t r a c t

The problem of frictional contact between a finite triangular plane body in frictional contact with an
elastically similar frustum, so that the combined geometry is that of a semi-infinite wedge, is studied
under plane and anti-plane loading conditions, using a bilateral formulation. The limit of validity of this
solution and, in particular the conditions for separation and first slip are found. These results are of
relevance to more general contacts having a ‘common edge’ and suggest whether slip is interior or edge
initiated. This is of practical relevance to contacts of this class subject to fretting loading.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The most common classes of contact arising are incomplete
(convex), complete (sharp edged) and receding. But there are
other kinds, notably when two components are fastened together
which are of the same nominal size, so that the extent of the
contact is defined by both bodies simultaneously, and the interface
will usually be flat. The object, here, is to investigate an example
problem of this kind but where the free surface, while straight, is
not, necessarily, perpendicular to the contact interface up to
the point of either first slip or separation, whichever occurs first.
In the interests of simplicity of definition of the geometry, we will
consider a contact formed from a semi-infinite wedge of half angle
α, Fig. 1, and where there is a straight interface (shown positioned
at a distance d from the apex, although the solution will not, in
fact, depend on this distance), and subject to normal and in-plane
shear, and possibly anti-plane shear forces, together with an in-
plane moment. The last is chosen so as to render the in-plane
shear force statically equivalent to one passing along the plane of
the contact interface.

Of the classes of contact mentioned, incomplete contacts are
unique in that the solution of the traction distribution arising is
virtually independent of the geometry of the rest of the contact
enabling, for example, the Hertzian contact to be solved with no
regard for what the rest of the body looks like. In the case of the
complete contacts it is possible to explain quite a lot of what
happens near the edges, but a general solution is out of the
question, and similar remarks apply here, so that we can hope only

to learn general trends.1 The first two solutions for problems of
this kind were (a) that arising when two strips of the same width,
with square ends and elastically similar, are pressed end-to-end
and subject to shear [1], and (b) the corresponding anti-plane
loading problem of two circular bars of the same radius pressed
end to end and subject to torsion [2]. These solutions are similar to
that to be investigated here when α-0, and permit us to include
just a little more generality in the stress field. We will restrict
ourselves to a basic investigation looking at conditions for first slip
(and separation), so that use may be made of the ‘bilateral’ model,
where the interface is assumed to be closed and adhered, and
a monolithic semi-infinite wedge represents the pair of bodies
‘glued’ together.

2. Semi-infinite wedge solutions

The classical Flamant solution for a wedge enables us to write
down the state of stress present when a normal load, P, and a
shear force, Q, are applied at the apex. There is only one non-zero
stress component, given by

srrðθÞ ¼ �P
r

2
2αþ sin 2α

cos θþQ
r

2
2α� sin 2α

sin θ; srθ ¼sθθ ¼ 0:

ð1Þ
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1 It should be noted that the progressive contact between a flat indenter with
rounded edges and a half-plane can be seen as an intermediate scenario, whereby
only approximated solutions can be obtained discarding the dependence of the
tractions on the detailed indenter geometry. The authors and their co-workers have
also discussed this class of contact problems (known also as ‘almost complete’
contacts) in some of their recent papers.
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A positive shear force produces positive srr in θ40: it therefore
acts in the negative x direction, and a positive normal load acts in
the negative y direction, Fig. 1. The application of a moment, M,
produces a stress distribution given by (see Barber [3])

srr

M
¼ � 2 sin ð2θÞ

r2½2α cos 2α� sin 2α� ð2Þ

srθ

M
¼ � cos 2α� cos ð2θÞ

r2½2α cos 2α� sin 2α�: ð3Þ

sθθ ¼ 0: ð4Þ
A positive moment produces positive srr in θ40: it therefore acts
in an anticlockwise direction, Fig. 1. Suppose we introduce a
straight interface at a distance, d, from the wedge apex. In order
to make the shear force, Q, statically equivalent to one passing
along the interface we set

M¼ �Qd ð5Þ
and introduce a new x-axis which is straight and perpendicular to
the θ¼0 radial line. Hence we can write down the state of stress
along this line as

srrðxÞ ¼ �Pd
r2
A1þ

Qx
r2

A2þ
4d2

d2þx2
A3

" #

� tan αrx
d
r tan α ð6Þ

srθðxÞ ¼
Qd
r2

A4�
d2�x2

d2þx2
A3

( )
ð7Þ

where

r2 ¼ d2þx2 ð8Þ

tan θ¼ x
d
; cos θ¼ d

r
; sin θ¼ x

r
; ð9Þ

and the coefficients (functions of α) are

A1 ¼
2

2αþ sin 2α
ð10Þ

A2 ¼
2

2α� sin 2α
ð11Þ

A3 ¼
1

½2α cos 2α� sin 2α� ð12Þ

A4 ¼
cos 2α

½2α cos 2α� sin 2α�: ð13Þ

The next step is to transform the state of stress into Cartesian
coordinates by rotating anticlockwise by ðπ=2�θÞ, i.e. θ-y; r-x,
giving

syyðxÞ ¼ � Pd3

ðd2þx2Þ2
A1þ

Qxd2

ðd2þx2Þ2
A2þ

6d2�2x2

d2þx2
A3�2A4

" #
ð14Þ

τxyðxÞ ¼
Pxd2

ðd2þx2Þ2
A1�

Qd

ðd2þx2Þ2
x2A2þ�ðd2�x2Þ2�4x2d2

d2þx2
A3þðd2�x2ÞA4

" #

ð15Þ
This is the basic solution and, although the absolute value of the
state of stress depends on the depth of the interface, its qualities
are independent of d, and we now probe violations of the Signorini
contact conditions.

First, the point where separation is most likely is at θ¼ α;
x=d¼ tan α, and occurs when

Q
P
¼ A1 cot α

A2þ
4

1þ tan 2 α
A3

� �
�2 A4�

1� tan 2 α
1þ tan 2 α

A3

� �

¼ A1ð1þ tan 2 αÞcot α
A2þ6A3�2A4þðA2�2A3�2A4Þ tan 2 α

:

Secondly, the traction ratio is given by
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so that we can easily find the minimum coefficient of friction to
ensure adhesion at all points along the interface, by ensuring that
it is at least equal to the maximum value of this ratio.

At a free surface, as both tractions vanish, the only surviving
stress component is the direct stress (s0 say) parallel with the free
edge. We can easily transform this into adjacent tractions present
along the interface giving

syy ¼ 1
2s0ð1þ cos 2αÞ ð17Þ

τxy ¼ 1
2s0 sin 2α: ð18Þ

So, the minimum coefficient of friction to ensure full adhesion at a
contact edge is given by

f 4
sin 2α

ð1þ cos 2αÞ ¼ tan α: ð19Þ

This is a general result for in-plane loading and is independent
of the loading conditions.

3. Anti-plane and combined loading

In the torsion problem [2] the first point to slip is always
the edge of the contact disk, but, of course, the shear stress
increases linearly with radius in that problem. Suppose that, here,

Fig. 1. Geometry of problem showing line of interface (d from wedge apex), tip
forces and statically equivalent position of in-plane shear force.
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