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a b s t r a c t

In this paper, a new microstructure-dependent sinusoidal beam model for buckling of microbeams is
presented using modified strain gradient theory. This microbeam model can take into consideration
microstructural and shear deformation effects. The equilibrium equations and corresponding boundary
conditions in buckling are derived with the minimum total potential energy principle. Buckling problem
of a simply supported microbeam subjected to an axial compressive force is analytically solved by Navier
solution procedure. Influences of thickness-to-length scale parameter and slenderness ratios on buckling
behavior are discussed in detail. It is observed that the size dependency becomes more important when
the thickness of the microbeam is closer to material length scale parameter. Also, it can be said that the
effects of shear deformation are more considerable for short and thick beams with lower slenderness
ratios.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Micro-sized structural and mechanical elements like bar, beam,
plate and shell are considered as frequently used basic compo-
nents of many micro-electro mechanical systems (MEMS) [1–5].
The characteristic dimensions of these elements are typically on
the order of microns and sub-microns. It has been reported in
some experimental studies that the structures become stiffer in
smaller sizes [6–8]. In the absence of any intrinsic or length scale
parameters, classical continuum theories do not have the ability to
predict the microstructure-dependent deformation behavior of
micro- and nano-sized structures. In order to determine the
mechanical responses of such structures, several non-classical
continuum theories have been developed such as couple stress
theory [9–11], micropolar theory [12], nonlocal elasticity theory
[13,14] and strain gradient theories [15–18].

The modified strain gradient theory was proposed by Lam et al.
[7] in which there is an additional equilibrium equation of
moments of couples besides the well-known classical equilibrium
equations of forces and moments of forces. This modified theory
has been employed to develop size-dependent beam models.
For instance, Kong et al. [19] and Wang et al. [20] developed
Bernoulli–Euler and Timoshenko microbeam models for ben-
ding and vibration responses, respectively. Buckling and bending

analysis of Bernoulli–Euler microbeams with various boundary
conditions was also carried out by present authors [21,22].
Furthermore, Kahrobaiyan et al. [23], Akgoz and Civalek [24] and
Ansari et al. [25] introduced Bernoulli–Euler and Timoshenko
beammodels for inhomogeneous functionally graded microbeams,
respectively. Also, this theory has been utilized to formulate
microbars [26–31] and nonlinear microbeam models [32–35].

For linear elastic isotropic materials, modified strain gradient
theory contains three additional material length scale parameters
relevant to dilatation gradients (l0), deviatoric stretch gradients
(l1) and rotation gradients (l2), respectively. It is notable that if
dilatation gradients and deviatoric stretch gradients are omitted
(l0 ¼ l1 ¼ 0), the formulation and governing equations of this
theory will be transformed to those of modified couple stress
theory proposed by Yang et al. [36]. This simpler theory has been
utilized to investigate static and dynamic responses of size-
dependent microbeams [37–46]. Furthermore, thermal effect on
buckling and free vibration responses of functionally graded
microbeams based on this theory was investigated by Nateghi
and Salamat-talab [47].

By this time, several beam theories have been proposed by
many researchers. The well-known of them are Euler–Bernoulli
(EBT) and Timoshenko (TBT) beam theories. According to assump-
tions in EBT, effects of shear deformation are ignored. The use of
this theory can be suitable for slender beams with a large aspect
ratio. However, effects of shear deformation can be more promi-
nent for moderately thick beams. TBT is an earlier shear deforma-
tion beam theory. TBT assumes that transverse shear stress and
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strain are invariant throughout the thickness of the beam. How-
ever, there are no transverse shear stress and strain at the upper
and lower surfaces of the beam and their distributions are not
uniform. For this reason, a shear correction factor is needed in
formulation. After that, some higher-order shear deformation
beam theories, which satisfy the condition of no shear stress and
strain at the top and bottom surfaces of the beam without any
shear correction factors, have been presented such as parabolic
(third-order) beam theory [48,49], trigonometric (sinusoidal)
beam theory [50], hyperbolic beam theory [51], exponential beam
theory [52] and a general exponential beam theory [53]. Static and
dynamic analyses of nonhomogeneous beams have been investi-
gated on the basis of various higher-order shear deformable beam
theories [54–56]. Also, several size-dependent beam models have
been developed on the basis of aforementioned beam theories in
conjunction with nonlocal elasticity theory [57–61], modified
couple stress and strain gradient theories [62–67].

The purpose of this study is to introduce a new non-classical
sinusoidal shear deformation beam model on the basis of modified
strain gradient theory in order to investigate stability response of
microbeams. The equilibrium equations and corresponding
boundary conditions in buckling are derived with the aid of
minimum total potential energy principle. Buckling problem of a
simply supported microbeam subjected to an axial compressive
force is analytically solved by Navier solution procedure. A detailed
parametric study is performed to show the influences of
thickness-to-length scale parameter ratio and slenderness ratio
on buckling behavior of microbeams. The effects of shear deforma-
tion can be considerable for short beams with lower aspect ratios
and a shear deformation beam theory should be used in modeling
and analysis.

2. Theory and formulation

According to the modified strain gradient elasticity theory,
strain energy U can be written with infinitesimal deformations
as [7]

U ¼ 1
2
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where ui, θi, εij, γi, η
ð1Þ
ijk and χs

ij denote the components of the
displacement vector u, the rotation vector θ, the strain tensor ε,
the dilatation gradient vector γ, the deviatoric stretch gradient
tensor ηð1Þ and the symmetric rotation gradient tensor χs, respec-
tively. Also, δ and eijk are the Kronecker delta and the alternating
symbols, respectively.

Furthermore, the components of the classical and higher-order
stress tensors are expressed as following [7]:

sij ¼ λεmmδijþ2μεij ð7Þ

pi ¼ 2μl20γi ð8Þ

τð1Þijk ¼ 2μl21η
ð1Þ
ijk ð9Þ

ms
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where l0; l1; and l2 are additional material length scale para-
meters relevant to dilatation gradients, deviatoric stretch gradi-
ents and rotation gradients, respectively. Furthermore, λ and μ are
the Lamé constants defined as

λ¼ Ev
ð1þvÞð1�2vÞ; μ¼ E

2ð1þvÞ ð11Þ

The displacement components of an initially straight beam (see
Fig. 1) on the basis of sinusoidal beam theory (SBT) can be written
as [50]

u1ðx; zÞ ¼ uðxÞ�z
dwðxÞ
dx

þRðzÞϕðxÞ
u2ðx; zÞ ¼ 0
u3ðx; zÞ ¼wðxÞ ð12Þ

in which

ϕðxÞ ¼ dwðxÞ
dx

�φðxÞ ð13Þ

where u1; u2 and u3 are the x-, y- and z-components of the
displacement vector, and also u and w are the axial and transverse
displacements, respectively, φ is the angle of rotation of the cross-
sections about y-axis of any point on the mid-plane of the beam,
respectively. RðzÞ is a function which depends on z and plays a role
in determination of the transverse shear strain and stress dis-
tribution throughout the height of the beam. In order to satisfy no
shear stress and strain condition at the upper and lower surfaces
of the beam, RðzÞ is selected as following without need for any
shear correction factors:

RðzÞ ¼ h
π

sin
πz
h

� �
ð14Þ

It can be noted that the displacement components for EBT, TBT
and parabolic (third-order) beam theory (PBT) will be obtained by
setting RðzÞ ¼ f0; z; zð1�4z2=3h2Þg, respectively. Using Eqs. (12)–
(14) into Eq. (2), we obtain the non-zero strain components as

ε11 ¼ u'�zw''þRϕ'; ε13 ¼
1
2
R;zϕ ð15Þ

where

u'¼ du
dx

; ϕ'¼ dϕ
dx

; w″¼ d2w
dx2

; R;z ¼
dRðzÞ
dz

ð16Þ

and by using above equations in Eqs. (3)–(5), the non-zero
components of higher-order gradients are expressed as

γ1 ¼ u″�zw‴þRϕ″; γ3 ¼ �w″þR;zϕ' ð17Þ
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Fig. 1. Geometry and cross-section of a simply supported beam subjected to an
axial compressive force.
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