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a b s t r a c t

This article combines the application of a global analysis approach and the more classical continuation,

bifurcation and stability analysis approach of a cyclic symmetric system. A solid disc with four blades,

linearly coupled, but with an intrinsic non-linear cubic stiffness is at stake. Dynamic equations are

turned into a set of non-linear algebraic equations using the harmonic balance method. Then periodic

solutions are sought using a recursive application of a global analysis method for various pulsation

values. This exhibits disconnected branches in both the free undamped case (non-linear normal modes,

NNMs) and in a forced case which shows the link between NNMs and forced response. For each case, a

full bifurcation diagram is provided and commented using tools devoted to continuation, bifurcation

and stability analysis.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, both free and forced vibrations of a non-linear
cyclic symmetric structure are studied. The structure is composed of
nb identical substructures which undergo large strains. This system
is typical when one studies bladed disks [2,26]. After modeling the
system, a set of coupled non-linear differential equations in which
non-linearity appears by cubic terms is obtained.

In the linear case, the study of the linear normal modes (LNMs)
reveals a majority of double eigenfrequencies, corresponding to
distinct eigenforms [22]. These eigenforms are associated with
nodal diameter vibration modes. As these LNMs arise from an
eigenvalue problem, there are always as many LNMs as degrees of
freedom (dofs). Moreover, in the free or forced case, only one
solution exists for a given frequency.

In the case of non-linear systems with cyclic symmetry, it has
been shown that the number of non-linear normal modes (NNMs
[7]) can exceed the number of dofs, the extra NNMs being generated
through bifurcations or internal resonances [7,27]. Localized non-
linear modes are an example of this property; they correspond to a
free motion in which only a few substructures vibrate with non-
negligible amplitude and they have no counterpart in the linear
theory [2,29]. In the forced case, these additional NNMs give rise to a
number of additional resonances leading to multiple solutions as
in [29] where Vakakis showed a very complicated structure of

resonance for a non-linear system with cyclic symmetry by using
the multiple scales method. He showed that for a given frequency
many solutions can coexist, some of them being stable.

Not only can multiple solutions coexist but also can they be
disconnected from each other. In this latter case, classical meth-
ods based on continuation and bifurcation analysis fail at finding
the disconnected branches of solutions. If one wants to dimension
a structure properly – by considering all the possible solutions –
one then needs to adopt a global analysis (GA) approach. Several
solutions are mentioned in the literature (see [23] for an over-
view) with a common drawback even for small systems which is
the computation cost. The GA method proposed in this paper
takes advantage of the cubic form of the non-linearity combined
with a reformulation of equations through the harmonic balance
method (HBM); the resulting systems in the free undamped case
for searching NNMs as well as in a forced case can then be solved
(globally) in a reasonable amount of time.

Section 2 describes the system and its dynamical and HBM
equations. The global analysis principle is then explained in Section
3.1; this is followed by recalls on continuation methods, bifurcation
and stability analysis in Section 3.2. Finally these methods are applied
to the undamped free system in order to find NNMs in Section 4 and
to a forced case which exhibits a very rich response in Section 5.

2. Studied system

2.1. General description and dynamical equations

The studied structure has a cyclic symmetry property and can
therefore be broken up into nb identical sectors (Fig. 1). Each
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sector is modeled by a thin rectangular plate clamped to the rigid
disk which itself is fixed (Fig. 2). Consecutive plates are coupled
by a linear stiffness while non-linearity is introduced by taking
into account their large deflection. Plane stress assumption and
the Love–Kirchhoff hypothesis (cross-sections exhibit solid body
motion and remain perpendicular to the deformed surface of the
middle sheet) are made. Then, plate displacements are entirely
parameterized by their middle sheet transverse displacement wj,
1r jrnb. Moreover the material is assumed to follow a standard
bi-dimensional Hooke’s law leading to the following expression
for the strain energy of plate j:

Uj ¼
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where E is Young’s modulus and n is Poisson’s ratio.
The energy V j of the linear stiffness localized at ðxr ,yrÞ ¼

ðLx=4,0Þ between plates j and jþ1 is given by

Vj ¼
1
2kðwjðxr ,yrÞ�wjþ1ðxr ,yrÞÞ

2
ð2Þ

for 1r jrnb with convention jþ1¼ 1 if j¼ nb.
By neglecting rotary inertia the kinetic energy Tj of plate j is

given by

Tj ¼
1
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In this paper, only a harmonic force, orthogonal to the plate,
localized in ðxf ,yf Þ ¼ ðLx,0Þ is considered. The work Wj due to such
an excitation on plate j is given by

Wj ¼wjðLx,0ÞFej ð4Þ

The total energies U, T, V and W are then given by the sum over
the number of plates nb of the different local energies Uj, Tj, Vj and
Wj. Equations of motions are finally derived by using Lagrange’s
equations along with a Rayleigh–Ritz approximation [16].

The remainder of this article will be devoted to the case of a
system composed of nb ¼ 4 identical sectors, whose displacements

are interpolated by a single Ritz function approximating the first
bending mode thus yielding a non-linear problem with n¼ 4 dofs
that will serve as an example for the present work. The Ritz func-
tion is Fðx,yÞ ¼ ðx=LxÞ

2 (consistent with the clamping at x¼ 0) and
leads to the following interpolation for transverse displacement of
the j-th blade:

wjðx,yÞ ¼ qjFðx,yÞ for 1r jrnb ð5Þ

By applying Lagrange’s equations, and by adding a damping
term, the following motion equations are obtained:

½M� €Xþ½C� _Xþ½K�XþbX3
¼ FeðtÞ ð6Þ

with the notations X¼ ðqjÞ1r jrn and X3
¼ ðq3

j Þ1r jrn. The vector
Fe ¼ Fe0cosðotÞ stands for the external forces amplitude, ½M� ¼ ½I�
is the mass matrix, ½C� ¼ d½I� is the damping matrix, ½K� is the
stiffness matrix given by

½K� ¼

aþ2c �c 0 �c
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�c 0 �c aþ2c

2
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and b is the non-linear stiffness coefficient. The definitions of a,
b, c, and d can be found in Appendix A along with their numerical
values.

2.2. Harmonic balance method

The harmonic balance method (HBM) is widely used for the
study of non-linear systems. Numerous applications can be found
in the literature, showing its ability to treat strongly non-linear
systems like friction between blades and casing [11,10] or geo-
metric non-linearities [14,21]. One major advantage of the method is
that it requires no assumption about the non-linearities’ magnitudes
and uses the same procedure for strongly and weakly non-linear
models.

The HBM consists of a decomposition of the solution X in a
truncated Fourier series:

XðtÞ ¼ A0þ
XNh

k ¼ 1

AkcosðkotÞþBksinðkotÞ ð8Þ

Injecting this development (8) in Eq. (6), and by projecting
equations on the ½1,ðcosðkotÞ,sinðkotÞÞ1rkrNh

� basis using the
following scalar product:

/f ,gS¼
Z 2p=o

0
f ðtÞgðtÞ dt ð9Þ

one gets a system of ~n ¼ n� ð2Nhþ1Þ non-linear algebraic equa-
tions with n� ð2Nhþ1Þþ1 unknowns Ak, Bk and o.

The number of harmonics retained Nh is a very important
parameter. Generally, the higher Nh is, the better the solution.
However, in the case where the number of harmonics selected is
high, the solution procedure can quickly become difficult and
time consuming. Fortunately, in most cases the series converges
fast enough and leads to systems with reasonable dimensions. In
this article only the first harmonic is going to be retained ( Nh ¼ 1)
and the constant term A0 is dropped due to the symmetry of the
system. Depending on whether the system is free or forced,
different formulations can be obtained.

Forced case: The equation to be solved in the forced case is
given by (6). The solution X is sought in the following form:

XðtÞ ¼ AcosðotÞþBsinðotÞ ð10Þ

which leads to the following set of 2n algebraic equations:

Hl
~XþHnlð

~XÞ ¼He ð11Þ

Fig. 1. Bladed wheel model used for establishing equations.

Fig. 2. Diagram of a rectangular plate and corresponding coordinate system.
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