
Isotropic damage analysis of frictional contact problems using
quadratic meshless boundary element method

Halit Gun n

Usak University, Faculty of Engineering, Department of Mechanical Engineering, TR-64200 Usak, Turkey

a r t i c l e i n f o

Article history:
Received 24 April 2013
Received in revised form
15 January 2014
Accepted 20 January 2014
Available online 30 January 2014

Keywords:
Isotropic damage
Contact mechanics
Boundary element
Radial integration method

a b s t r a c t

In this paper, a quadratic meshless boundary element formulation for isotropic damage analysis of
contact problems with friction is presented. To evaluate domain-related integrals due to the damage
effects, the radial integration method (RIM) based on the use of the approximating the normalized
displacements in the domain integrals by a series of prescribed radial basis functions (RBF) is employed.
An exponential evolution equation for the damage variable is adopted. The details of coupling the
different systems of equations for each body in contact under the several contact conditions are given to
obtain the overall system of equations. Numerical examples covering shrink-fit and frictional punch
problems are given to demonstrate the efficiency of the present meshless BEM.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is known that the boundary element (BE) method is a well-
suited computational tool for linear elastic problems. Owing to its high
resolution of stresses on the surface, the BE approach has been shown
to be accurate in problems involving stress concentration, fracture
mechanics and contact analysis. However, its extension to non-
homogeneous and nonlinear damage problems is not a straightfor-
ward task, since it gives rise to additional domain-related integrals.

In this work, a quadratic meshless boundary element formulation
for isotropic damage analysis of contact problems with friction is
given. To transform domain integrals into boundary integrals, the
radial integration method (RIM), developed by Gao [1], based on the
use of approximating the normalized displacements in the domain
integrals by a combination of radial basis functions and polynomials in
terms of global coordinates, leading to a meshless scheme, is
employed. An exponential evaluation equation for the damage vari-
able, which is the ratio of the damaged area to the total area of the
material considered, is adopted. The different systems of equations for
each body in contact are united under the contact conditions,
including shrink-fit applications, infinite friction, frictionless and
Coulomb friction. The shear modulus is a function of the stresses;
therefore, two iterative schemes are combined in such a way that
contact iterations are carried out for each damage iteration step.
Numerical examples covering shrink-fit and frictional cases are given
to demonstrate the efficiency of the present meshless BEM.

2. BE analytical formulations

For isotropic, homogenous and linear elastic solids with the
shear modulus μ being dependent on the damage variable D with
constant Poisson's ratio ν, the scalar damage variable D, which is
defined as the ratio of the damaged area to the total area of the
considered body, is assumed to be a function of stress invariants
[2]. The following damage evolution equation is adopted:

D¼ 1�e�ðseq=s0Þm ð1Þ

wherem and s0 are material constants, and the equivalent stresses
seq in terms of deviatoric stresses Sij is given by

seq ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2
SijSij

r
; Sij ¼ sij�

1
3
skkδij ð2Þ

The shear modulus can be then expressed as [2]

μðsÞ ¼ μ0ð1�DÞ ¼ μ0e
�ðseq=s0Þm ð3Þ

where μ0 is the shear modulus of the undamaged materials.
Without considering body forces, the displacement and stress

boundary-integral equations for varying shear modulus are,
respectively, given as [2–4]

CijðPÞ ~uiðPÞ ¼ �
Z
S
TijðP;Q Þ ~ujðQ ÞdSQ þ

Z
S
UijðP;Q ÞtjðQ ÞdSQ

þ
Z
Ω
ðVijkðP; qÞÞ ~ujðQ ÞdΩðqÞ ð4Þ
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sijðpÞ ¼ �
Z
S
Tijkðp;Q Þ ~ukðQ ÞdSQ þ

Z
S
Uijkðp;Q ÞtkðQ ÞdSQ

þ
Z
Ω
ðVijkðp; qÞÞ ~ukðQ ÞdΩðqÞþFijkðpÞ ~ukðpÞ ð5Þ

In these expressions Uij and Tij are the second-order displacement
and traction tensors in the i direction at the field point Q or q due
to an orthogonal unit load at the variable point P or p in the j
direction. ~ui and ti are displacement and traction, respectively.
Capital letters are used to indicate that the point concerned lies on
the boundary S. Cij is the free-term tensor, whose components
depend on the geometry, and Ω represents the solution domain.
The kernel functions Vij and Vijk are given as [3]
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�1
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The integral free-term Fijk depends on the load point and it is given as

Fijk ¼
�1

4πð1�υÞ δij
∂ ~μ
∂xk

þδik
∂ ~μ
∂xj

þδjk
∂ ~μ
∂xi

� �
ð8Þ

~ui and ~μ are normalized displacements and shear modulus, respec-
tively, and given as [2]

~uiðxÞ ¼ μðxÞuiðxÞ; ~μðxÞ ¼ log μðxÞ ð9Þ

3. Numerical implementation

By discretizing the boundary S into a series of isoparametric
quadratic elements, and introducing internal nodes and collocat-
ing the load point P at every boundary, a system of equation for
boundary can be obtained. The evaluation of the boundary-only-
related integrals is well covered in the literature and will be
summarized here. The geometry can be described in terms of
quadratic shape functions in a local co-ordinate axes system as
follows (see for example Refs. [5,6]):

xiðξÞ ¼ ∑
3

c ¼ 1
NcðξÞðxiÞc ð10Þ

where Nc is the quadratic shape function and ξ is the local co-
ordinate. Similarly, the displacement and traction vectors can be
expressed in terms of quadratic shape functions. For two-
dimensional formulation, the kernel functions contain singulari-
ties of the order of 1/r where r is the distance between the load
point p and the field point Q. Therefore, the integrals become
singular when p coincides with Q. It is important to devise
accurate numerical integration schemes to evaluate the integrals
in such cases, as it has a direct influence on the accuracy of the
solutions. When p and Q do not coincide, the standard Gaussian
quadrature formulae can be used, even if p and Q are in the same
element. However, when p coincides with Q, the concept of rigid
body motion can be employed (see for example Refs. [5,6]). To
compute stresses at boundaries, the traction-recovery method is
applied to Eq. (5).

For the evaluation of the domain-related integrals without
resorting to the discretization of the domain into internal cells,
the radial integration approach is adopted to transform them into
boundary integrals. To do so, the normalized displacements are
approximated by a series of prescribed basis functions used in the

dual reciprocity method DRM [7], given as

~ui ¼∑
A
αAi ϕ

AðR=SAÞþaki xkþa0i ð11Þ

where R¼ jjx�xAjj is the distance from the application point xA to
the field point x, whereas SA is the size of the support region for
the radial basis function (RBF) at points xA and αAi and αki are
coefficients to be determined. By considering computational
experiences [3], the following 4th-order spline RBF is employed
in the present formulation:

ϕAðR=SAÞ ¼
1 �6 R

SA

	 
2
þ8 R

SA

	 
3
�3 R
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4
0rRrSA

0 RZSA

8<
: ð12Þ

In this work, according to computational experiences [3], the
support size SA is defined by selecting six application points xA

along each direction. After solving the resulting set of algebraic
equations, the coefficients αAi and aki appearing in Eq. (11) are
obtained. By substituting the normalized displacements given in
Eq. (11) into the domain integral for displacement in Eq. (4) and
then applying the RIM, the domain radial integral for displace-
ments is obtained. Similarly, the domain radial integral for stresses
can be obtained. The details of the transformation of the domain
integrals into the boundary integrals can be found in [2–4]. The
radial integrals for the displacements are regular and they can be
integrated numerically using the standard Gaussian quadrature
integration procedure. However, the radial integrals for stresses
are strongly singular when the load point approaches the field
point. To evaluate these radial integrals, the technique, known as
singularity separation technique [6], is employed.

It should be noted that the integration process is performed
separately for each domain in contact. By taking each point on the
boundary in turn as the load point and performing necessary
numerical integrations, a set of linear algebraic equations is obtained
for each contacting body boundary nodes and can be formed as
follows:

½A�½ ~u� ¼ ½B�½t�þ½V �½ ~u� ð13Þ
The matrices [A], [B] and [V] contain the integrals of the displace-
ment, traction and domain kernel integrals, respectively. All matrices
are fully populated. To arrive at the solution over boundary nodes for
a single solution domain, Eq. (13) becomes

½ ~A�½ ~u� ¼ ½B�½t� ð14Þ
The matrix ½ ~A� is a combination of [A] and [V]. When internal points
appear in the BE mesh. The matrix [V] can be split into two matrices
as: ½V �b, including boundary-only-related terms and ½V �i, internal-
only-related terms. The following expression appears to be:

½A�½ ~u� ¼ ½B�½t�þ½V �b½ ~u�bþ½V �i½ ~u�i ð15Þ
With further manipulation as in Eq. (13), this expression becomes

½ ~A�½ ~u� ¼ ½B�½t�þ½V �i½ ~u�i ð16Þ
To perform the necessary iterations, this expression requires only
boundary and contact conditions, since the values of displacements
at internal points are computed from the previous iteration step. It
should be noted that matrices [A] and [B] appearing in the above-
given expressions are functions of geometry and material properties,
respectively. Thus they do not need to be re-calculated for each
iteration.

4. BE contact formulation

In order to couple the different systems of equations obtained
from the discretized BE equation for each body in contact, the
contact conditions have to be imposed on the contacting node
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