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The Green’s functions for an infinite and a semi-infinite Kirchhoff isotropic laminated plate subjected to
concentrated forces, concentrated moments, discontinuous displacements and slopes are obtained. The
explicit expressions of the three 4 x 4 real matrices H, L and S for an isotropic laminated plate are derived
by using the complex variable formulation recently developed by the authors. Once the Green'’s functions
for an infinite plate are known, those for a semi-infinite plate can be conveniently obtained by using
analytical continuation. The image forces on a point dislocation with discontinuous in-plane displace-
ments and slopes due to its interaction with a rigidly clamped edge and a free edge are presented by
using the obtained explicit expressions of H and L. Finally, the surface Green’s functions of concentrated
forces and moments are obtained as a limiting case of the Green'’s functions for a semi-infinite plate with
a free edge. Some interesting features of the surface Green's functions are observed.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Green's function for Kirchhoff anisotropic laminated plates, in
which the stretching and bending deformations are intrinsically
coupled, has become an intensive research topic [1-8]. As pointed
out by Cheng and Reddy [5] and Yin [7], the solutions derived by
Becker [1] and Zakharov and Becker [2,3] are only valid for non-
degenerate materials in which all the eigenvalues are distinct. Cheng
and Reddy [4] derived real-form Green'’s function solutions for infinite
and semi-infinite anisotropic plates by using the octet formalism [9].
However, it is not easy to obtain the 8 x 8 real matrices N and N(¢) in
the real-form solutions for a specific anisotropic laminate.

A Kirchhoff isotropic laminated plate is a mathematically degene-
rate material because there are only two independent eigenvectors
associated with the quadruple roots p; = p, = p; = p, =i [9]. Recently,
Wang and Zhou [10] developed an elegant complex variable formula-
tion for Kirchhoff isotropic laminated plates, which was originally
derived by Beom and Earmme [11].

Even though the Green's functions for isotropic homogeneous
plates with various complex configurations have been studied exten-
sively (see e.g., [12-15]), those for isotropic inhomogeneous or
laminated plates have rarely been addressed. The only available
solution for a point force, a point moment and a dislocation in an
infinite isotropic laminated plate was given by Beom and Earmme [11].
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This paper aims to achieve two objectives. One is to derive the
explicit expressions of the three 4 x 4 real matrices H, L and S for
an isotropic laminated plate by using our recently developed
complex variable formulation [10]. The original definition of the
three real matrices can be found in [9]. The other is to obtain
Green’s functions for an infinite and a semi-infinite isotropic
laminated plate subjected to concentrated forces, concentrated
moments, discontinuous displacements and slopes. By using the
existing results in the sextic and octet Stroh formalisms [9,16], and
employing the explicit expressions of H and L derived in this work,
the image forces on a point dislocation with discontinuous
in-plane displacements and slopes due to its interaction with a
rigidly clamped edge and a free edge will be presented. Through a
limiting procedure, the surface Green’s functions of concentrated
forces and moments will be obtained and compared with the
existing surface Green’s function solutions for an isotropic homo-
geneous semi-infinite plate (e.g., the Flamant solution).

It should be pointed out that one of the main applications of the
derived Green’s functions is that they can be further used to find
the Eshelby’s tensor of isotropic laminated plates. Consequently, the
overall mechanical properties of these laminated plates can be
predicted. For more details, interested readers may refer to [17-19].

2. Formulation

This section is organized as follows. For readers’ convenience,
Section 2.1 will give a brief introduction of the fundamental
complex variable formulation that we have developed in [10].
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Section 2.2 will then present how to derive the explicit expres-
sions of the three real matrices H, L and S for an isotropic
laminated plate by using such complex variable formulation.

2.1. Complex variable formulation

Consider a plate composed of an isotropic, linearly elastic
material that can be inhomogeneous and laminated in the thick-
ness direction. The plate has uniform thickness h, with the main
plane of its undeformed form being located at x3 = 0 in a Cartesian
coordinate system {x;}(i=1,2,3). The displacement field in the
Kirchhoff plate theory is given by

ﬂ(lzu(1+x319aa ﬂ?’ =W, (1)

where u,, w, and 9, = —w,, represent the in-plane displacements,
deflection, and slopes on the main plane, respectively and are all
independent of xs.

The membrane stress resultants N,; bending moments M,
transverse shearing forces R; and the modified Kirchhoff trans-
verse shearing forces V, that exclusively apply to free edge are
defined by

Nop =Q0up, Moy =QX304p, Ry =Mapa,

Vi=Ri+Miz2, V2 =Ry +M>i1, 2)
where Q(---) = f’iﬁoh"(m)d& with hg being the distance between
the main plane and the lower surface of the plate.

When there is no external loading applied on the top and bottom
surfaces of the plate, the equilibrium equations can be written as

Neps =0, R;p=0, 3

which can be satisfied by introducing four stress functions ¢, and
ne sSuch that [9]

N(x/} =~ € poPaw> an/;’ = = € polla,w _% € aplle,w>
Rll = 7% € aﬂ”o},w/}’ Vll =—€ aolo,wwn> (4)
where € ,; are the components of the two-dimensional permuta-
tion tensor.

The constitutive equations for the laminated isotropic plate can
be written as [11]
N(zﬂ = Arl/}mp Ewp + B(l/}wp Kaps
Ma[i = Baﬂwpewp +Da/iwp’<wp, (5)
where ¢,; and «,s are the main plane strains and curvatures;

Acpop Bapwp and Dy, are the extensional, coupling and bending
stiffness tensors given by

1
Aa/im/l = A] 2 5{1/3 (3“)/, + E(Al 1— Al 2 )((Sam 5/3/1 + 6(1/) 5/;,,,) 5
1
B afwp = B 12 5{1/5 6(1)/) - §B 12 ((Saw 5/}/) + 5(1/) 6/7’(11),
1
Da/imp = D] 2 5{1[15(»/) + E(Dl 1— Dl 2 )(‘sam 5/;[, + 5(1/)6/1(1))~ (6)

In Eq. (6), 84 is the Kronecker delta, Aj = QCj;, Bjj = Qx3Cy, and
Dj=Qx3C; (ij=11,12), where Cy;=E/(1-2?) and Cip=
vE/(1—2?) with E and v being the Young’'s modulus and Poisson’s
ratio of the plate, respectively. We choose the main plane to make
By =0, which results in that hy= [ X3C11dX3/ [ Ci1dX3 with
X3 = X3+ hg representing the vertical coordinate of the given point
from the lowest surface of the plate.
By substituting Eq. (5) into Eq. (3), we obtain

(A1 +A12)Up s+ (A1 —A12)Uapp =0, Waeps =0, (7)
which shows that stretching and bending are decoupled in the
equilibrium equations. Consequently, the membrane stress resul-

tants, bending moments, transverse shearing forces, in-plane
displacements, deflection and slopes on the main plane of the

plate, and the four stress functions can be concisely expressed in
terms of four analytic functions ¢(z), w(z), #(z) and ¥(z) of the
complex variable z = x; +ix; as follows [9-11]:

N114 N3y =4Re{¢'(2)+BP' (2)},

Ny —N11+2iN1; = 2[2¢"(2) +y/'(2) + BZ@"(2) + BY'(2)],

B(x*—1
M11+Ma; =4D(1+°)Re{&'(2)} +(T)Re{¢’(z)},

My — M1 +2iM1; = —2D(1 —P)[z0"(2)+ ¥'(2)] —5[24)”(2)-‘1—1///(2)],

Ri—iR, = 4D¢”(Z)+%:])r/>”(z), ®)

2u(uy +iup) = K Pp(2) — 24 (2) — (@),
91 +182 = D(2)+29'(2) +y(z),w = —Re{ZD(2) +x(2) },
o1 +ipy = i[p(2)+2¢'(2) +y(@)]+iB[@2) + 2@ (2) + w(2)],

m +iny =D — PP b(2)— 28 2) —WH%[M(z)—z%—WL

)
where ¥(z) = y/(z), and
_1 _ _ _Anz p_Dn
/4—2(/\11—1‘\12), B=Bi3, D=D, VA—AH, V=D,
_3An-An _3-/  3D;+Dip 3+./° (10)

T AntAn 144 = D11 —Diz — 102

2.2. Explicit expressions of H, L and S

It is stressed here that the octet formalism in [9] is still valid if
x3=0 in the Cartesian coordinate system is chosen on any plane
parallel to the mid-plane of the plate. In the development of the
octet formalism for Kirchhoff anisotropic plates, Cheng and Reddy
[9] introduced three 4 x 4 real matrices H, L and S. Furthermore,
Cheng and Reddy [4] gave an indirect proof that the two sym-
metric matrices H and L are positive definite, and they formally
proved in [20] that the two matrices are positive definite. Below
we derive the explicit expressions of H, L and S for isotropic
laminated plates following the method described in Chapters
6.4 and 13.2 in [16]. Eq. (9) can be equivalently expressed into
the following matrix forms:

U ¢/ () +y(2) 2 ¢ (@) +y(2)
up , 6] (2] , #(2)
o | =R 2o+ ve) | (|0 | =R\ B | 200+ | (0
9, D(2) 7p) D(2)
an
where
(% & O
P [ S
A = 2u 2u s (12)
0 0o 1 1
L 0 0 i —i
[ —i i —iB iB
1 1 B B
B=| B B ip1-,P) iD1-P)P |- 13
—-£ B —DA-P) DA-PuP
Consequently, the impedance matrix M= —iB’A’~! and its inverse

M~ ' =iA’B'~! can be determined as
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