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a b s t r a c t

The Green0s functions for an infinite and a semi-infinite Kirchhoff isotropic laminated plate subjected to
concentrated forces, concentrated moments, discontinuous displacements and slopes are obtained. The
explicit expressions of the three 4�4 real matrices H, L and S for an isotropic laminated plate are derived
by using the complex variable formulation recently developed by the authors. Once the Green0s functions
for an infinite plate are known, those for a semi-infinite plate can be conveniently obtained by using
analytical continuation. The image forces on a point dislocation with discontinuous in-plane displace-
ments and slopes due to its interaction with a rigidly clamped edge and a free edge are presented by
using the obtained explicit expressions of H and L. Finally, the surface Green0s functions of concentrated
forces and moments are obtained as a limiting case of the Green0s functions for a semi-infinite plate with
a free edge. Some interesting features of the surface Green0s functions are observed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Green0s function for Kirchhoff anisotropic laminated plates, in
which the stretching and bending deformations are intrinsically
coupled, has become an intensive research topic [1–8]. As pointed
out by Cheng and Reddy [5] and Yin [7], the solutions derived by
Becker [1] and Zakharov and Becker [2,3] are only valid for non-
degenerate materials in which all the eigenvalues are distinct. Cheng
and Reddy [4] derived real-form Green0s function solutions for infinite
and semi-infinite anisotropic plates by using the octet formalism [9].
However, it is not easy to obtain the 8�8 real matrices ~N and ~NðθÞ in
the real-form solutions for a specific anisotropic laminate.

A Kirchhoff isotropic laminated plate is a mathematically degene-
rate material because there are only two independent eigenvectors
associatedwith the quadruple roots p1 ¼ p2 ¼ p3 ¼ p4 ¼ i [9]. Recently,
Wang and Zhou [10] developed an elegant complex variable formula-
tion for Kirchhoff isotropic laminated plates, which was originally
derived by Beom and Earmme [11].

Even though the Green0s functions for isotropic homogeneous
plates with various complex configurations have been studied exten-
sively (see e.g., [12–15]), those for isotropic inhomogeneous or
laminated plates have rarely been addressed. The only available
solution for a point force, a point moment and a dislocation in an
infinite isotropic laminated plate was given by Beom and Earmme [11].

This paper aims to achieve two objectives. One is to derive the
explicit expressions of the three 4�4 real matrices H, L and S for
an isotropic laminated plate by using our recently developed
complex variable formulation [10]. The original definition of the
three real matrices can be found in [9]. The other is to obtain
Green0s functions for an infinite and a semi-infinite isotropic
laminated plate subjected to concentrated forces, concentrated
moments, discontinuous displacements and slopes. By using the
existing results in the sextic and octet Stroh formalisms [9,16], and
employing the explicit expressions of H and L derived in this work,
the image forces on a point dislocation with discontinuous
in-plane displacements and slopes due to its interaction with a
rigidly clamped edge and a free edge will be presented. Through a
limiting procedure, the surface Green0s functions of concentrated
forces and moments will be obtained and compared with the
existing surface Green0s function solutions for an isotropic homo-
geneous semi-infinite plate (e.g., the Flamant solution).

It should be pointed out that one of the main applications of the
derived Green0s functions is that they can be further used to find
the Eshelby0s tensor of isotropic laminated plates. Consequently, the
overall mechanical properties of these laminated plates can be
predicted. For more details, interested readers may refer to [17–19].

2. Formulation

This section is organized as follows. For readers0 convenience,
Section 2.1 will give a brief introduction of the fundamental
complex variable formulation that we have developed in [10].
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Section 2.2 will then present how to derive the explicit expres-
sions of the three real matrices H, L and S for an isotropic
laminated plate by using such complex variable formulation.

2.1. Complex variable formulation

Consider a plate composed of an isotropic, linearly elastic
material that can be inhomogeneous and laminated in the thick-
ness direction. The plate has uniform thickness h, with the main
plane of its undeformed form being located at x3 ¼ 0 in a Cartesian
coordinate system fxigði¼ 1;2;3Þ. The displacement field in the
Kirchhoff plate theory is given by

~uα ¼ uαþx3ϑα; ~u3 ¼w; ð1Þ
where uα, w, and ϑα ¼ �w;α represent the in-plane displacements,
deflection, and slopes on the main plane, respectively and are all
independent of x3.

The membrane stress resultants Nαβ, bending moments Mαβ,
transverse shearing forces Rβ, and the modified Kirchhoff trans-
verse shearing forces Vα that exclusively apply to free edge are
defined by

Nαβ ¼Qsαβ; Mαβ ¼Qx3sαβ; Rβ ¼Mαβ;α;

V1 ¼ R1þM12;2; V2 ¼ R2þM21;1; ð2Þ
where Q ð⋯Þ ¼ R h�h0

�h0
ð⋯Þdx3 with h0 being the distance between

the main plane and the lower surface of the plate.
When there is no external loading applied on the top and bottom

surfaces of the plate, the equilibrium equations can be written as

Nαβ;β ¼ 0; Rβ;β ¼ 0; ð3Þ
which can be satisfied by introducing four stress functions φα and
ηα such that [9]

Nαβ ¼ �Aβωφα;ω; Mαβ ¼ �Aβωηα;ω�1
2 Aαβηω;ω;

Rα ¼ �1
2 Aαβηω;ωβ; Vα ¼ �Aαωηω;ωω; ð4Þ

where Aαβ are the components of the two-dimensional permuta-
tion tensor.

The constitutive equations for the laminated isotropic plate can
be written as [11]

Nαβ ¼ AαβωρεωρþBαβωρκωρ;

Mαβ ¼ BαβωρεωρþDαβωρκωρ; ð5Þ
where εαβ and καβ are the main plane strains and curvatures;
Aαβωρ;Bαβωρ and Dαβωρ are the extensional, coupling and bending
stiffness tensors given by

Aαβωρ ¼ A12δαβδωρþ
1
2
ðA11�A12ÞðδαωδβρþδαρδβωÞ;

Bαβωρ ¼ B12δαβδωρ�
1
2
B12ðδαωδβρþδαρδβωÞ;

Dαβωρ ¼D12δαβδωρþ
1
2
ðD11�D12ÞðδαωδβρþδαρδβωÞ: ð6Þ

In Eq. (6), δαβ is the Kronecker delta, Aij ¼ QCij, Bij ¼Qx3Cij, and
Dij ¼Qx23Cij (ij¼ 11;12), where C11 ¼ E=ð1�ν2Þ and C12 ¼
νE=ð1�ν2Þ with E and ν being the Young0s modulus and Poisson0s
ratio of the plate, respectively. We choose the main plane to make

B11 ¼ 0, which results in that h0 ¼
R h
0 X3C11dX3=

R h
0 C11dX3 with

X3 ¼ x3þh0 representing the vertical coordinate of the given point
from the lowest surface of the plate.

By substituting Eq. (5) into Eq. (3), we obtain

ðA11þA12Þuβ;βαþðA11�A12Þuα;ββ ¼ 0; w;ααββ ¼ 0; ð7Þ
which shows that stretching and bending are decoupled in the
equilibrium equations. Consequently, the membrane stress resul-
tants, bending moments, transverse shearing forces, in-plane
displacements, deflection and slopes on the main plane of the

plate, and the four stress functions can be concisely expressed in
terms of four analytic functions ϕðzÞ, ψðzÞ, ΦðzÞ and Ψ ðzÞ of the
complex variable z¼ x1þ ix2 as follows [9–11]:

N11þN22 ¼ 4Re ϕ0ðzÞþBΦ0ðzÞ� �
;

N22�N11þ2iN12 ¼ 2½zϕ″ðzÞþψ 0ðzÞþBzΦ″ðzÞþBΨ 0ðzÞ�;

M11þM22 ¼ 4Dð1þνDÞRe Φ0ðzÞ� �þBðκA�1Þ
μ

Re ϕ0ðzÞ� �
;

M22�M11þ2iM12 ¼ �2Dð1�νDÞ½zΦ″ðzÞþΨ 0ðzÞ��B
μ
½zϕ″ðzÞþψ 0ðzÞ�;

R1� iR2 ¼ 4DΦ″ðzÞþBðκAþ1Þ
2μ

ϕ″ðzÞ; ð8Þ

2μðu1þ iu2Þ ¼ κAϕðzÞ�zϕ0ðzÞ�ψðzÞ;
ϑ1þ iϑ2 ¼ΦðzÞþzΦ0ðzÞþψ ðzÞ;w¼ �Re zΦðzÞþχðzÞ� �

;

φ1þ iφ2 ¼ i½ϕðzÞþzϕ0ðzÞþψ ðzÞ�þ iB½ΦðzÞþzΦ0ðzÞþψðzÞ�;

η1þ iη2 ¼ iDð1�νDÞ½κDΦðzÞ�zΦ0ðzÞ�ψðzÞ�þ i
B
2μ

½κAϕðzÞ�zϕ0ðzÞ�ψðzÞ�;

ð9Þ

where Ψ ðzÞ ¼ χ0ðzÞ, and

μ¼ 1
2
ðA11�A12Þ; B¼ B12; D¼D11; ν

A ¼ A12

A11
; νD ¼D12

D11
;

κA ¼ 3A11�A12

A11þA12
¼ 3�νA

1þνA
; κD ¼ 3D11þD12

D11�D12
¼ 3þνD

1�νD
: ð10Þ

2.2. Explicit expressions of H, L and S

It is stressed here that the octet formalism in [9] is still valid if
x3¼0 in the Cartesian coordinate system is chosen on any plane
parallel to the mid-plane of the plate. In the development of the
octet formalism for Kirchhoff anisotropic plates, Cheng and Reddy
[9] introduced three 4�4 real matrices H, L and S. Furthermore,
Cheng and Reddy [4] gave an indirect proof that the two sym-
metric matrices H and L are positive definite, and they formally
proved in [20] that the two matrices are positive definite. Below
we derive the explicit expressions of H, L and S for isotropic
laminated plates following the method described in Chapters
6.4 and 13.2 in [16]. Eq. (9) can be equivalently expressed into
the following matrix forms:

u1

u2

ϑ1

ϑ2

2
6664

3
7775¼ Re A0

zϕ0ðzÞþψðzÞ
ϕðzÞ

zΦ0ðzÞþΨ ðzÞ
ΦðzÞ

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;
;

φ1

φ2

η1
η2

2
66664

3
77775¼ Re B0

zϕ0ðzÞþψðzÞ
ϕðzÞ

zΦ0ðzÞþΨ ðzÞ
ΦðzÞ

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;
;

ð11Þ
where

A0 ¼

� 1
2μ

κA

2μ 0 0

� i
2μ � iκA

2μ 0 0

0 0 1 1
0 0 i � i

2
66664

3
77775; ð12Þ

B0 ¼

� i i � iB iB

1 1 B B
iB
2μ

iBκA
2μ iDð1�νDÞ iDð1�νDÞκD

� B
2μ

BκA
2μ �Dð1�νDÞ Dð1�νDÞκD

2
666664

3
777775: ð13Þ

Consequently, the impedance matrix M¼ � iB0A0�1 and its inverse
M�1 ¼ iA0B0�1 can be determined as
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