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a b s t r a c t

The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting

non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an

applied magnetic field have been studied when the motion is induced impulsively from rest. The non-

linear partial differential equations governing the flow and heat transfer have been solved by the

homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or

approximate solutions have also been obtained. The special interest are the effects of the power-law

index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat

transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear

stress and heat transfer rate at the surface are found to be significantly influenced by the power-law

index N except for large time and they show opposite behaviour for steady and unsteady flows. The

magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is

comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts

strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number

decrease rapidly in a small interval 0ot�o1 and reach the steady-state values for t*
Z4.

& 2010 Published by Elsevier Ltd.

1. Introduction

In recent years, the non-Newtonian fluids with or without
magnetic field find an increasing applications in industries such as
the flow of nuclear fuel slurries, liquid metal and alloys, plasma
and mercury, lubrication with heavy oils and greases, coating of
papers, polymer extrusion, continuous stretching of plastic films
and artificial fibres and many others. During the past three
decades there have been extensive research works on various
aspects of non-Newtonian power-law fluids over bodies of
different shapes which are documented in books by Skelland
[1], Bird et al. [2] and Tanner [3]. Irvine and Karni [4] have
presented an excellent review of non-Newtonian fluids. The
steady viscous incompressible flow of a non-Newtonian power-
law fluid on a two-dimensional body in the presence of a
magnetic field was studied by Sarpkaya [5] and Djukic [6,7].
Andersson et al. [8] have considered the steady MHD flow of a
power-law fluid over a linearly stretching surface. The flow and
heat transfer of a power-law fluid over a uniform moving surface
with a constant parallel free stream in the presence of a magnetic

field have been studied by Kumari and Nath [9]. Liao [10] has
obtained an analytical solution of the MHD of a non-Newtonian
power-law fluid over a linearly stretching surface. Abel et al. [11]
have considered the heat and mass transfer aspect of this
problem. Abo-Eldahab and Salem [12] have examined the Hall
effect on the MHD free convection flow of a non-Newtonian
power-law fluid on a stretching surface. Recently, Zhang and
Wang [13,14] have presented a mathematical analysis for the
existence and uniqueness of the self-similar solution for two-
dimensional MHD boundary layer flow of dilatant fluids ðN41Þ.
However, the above problems deal with steady flows. Recently,
Xu and Liao [15] have obtained the solution of the unsteady MHD
viscous flow of a non-Newtonian power-law fluid caused by an
impulsively stretching surface by using the homotopy analysis
method (HAM). Also, Xu et al. [16] have used homotopy analysis
method (HAM) to study the unsteady MHD flow of a viscous
incompressible non-Newtonian power-law fluid near the forward
stagnation-point region of a two-dimensional body. More re-
cently, Kumari et al. [17] have investigated the unsteady MHD
flow and heat transfer of a viscous incompressible electrically
conducting non-Newtonian power-law fluid in the stagnation
region of a two-dimensional body. Two situations were considered:
(a) the flow is initially steady, and at t40 there is a step-change
in the velocity of the potential flow, and (b) the velocity in the
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potential flow is time-dependent. The governing differential
equations were solved numerically. It is evident from the
literature survey that only a few analyzes are available for the
transient flow and heat transfer problems of a non-Newtonian
power-law fluid over a surface. To this end, it is worth mentioning
that Garg and Rajagopal [18] obtained a pseudo-similarity
solution for the flow of an incompressible fluid of second grade
past a wedge with non-permeable walls, while Garg [19] reported
such solutions for a permeable wedge with suction, respectively
by augmenting the boundary conditions. It was shown in these
papers that the advantage of augmenting the boundary conditions
over the perturbation approach for small values of the dimensionless
normal stress perturbation parameter e is that the analysis is valid
even for large values of e, as shown by Garg and Rajagopal [20].

Since many flow and heat transfer problems of practical
interest are unsteady either due to the impulsive change in the
free stream velocity or surface velocity and (or) sudden change in
wall temperature (or heat flux) or due to the time dependent
variation in them, it is essential to know how the surface shear
stress and heat transfer rate are affected by the nature of the non-
Newtonian fluids characterized by the parameter N, magnetic
field and Prandtl number in the entire time interval. Therefore, a
parametric study showing the influence of these parameters on
velocity and temperature as well as on the surface shear stress
and heat transfer rate will be useful to chemical engineers
involved with non-Newtonian flow problems.

This paper considers the transient flow and heat transfer of a
viscous incompressible electrically conducting non-Newtonian
power-law fluid in the stagnation region of a two-dimensional
body with an applied magnetic field. We have studied the
situation where prior to the time t=0, the body and the fluid are
at rest and the wall and the fluid have same temperature TN. Then
at t=0, the external stream is set into impulsive motion from rest
and the body temperature is suddenly raised to TwðTw4T1Þ. The
partial differential equations governing the flow and heat transfer
have been solved by both homotopy analysis method and finite-
difference scheme. The computation has been carried out from
the initial transient flow to the steady state flow. For some
particular cases, analytical or approximate solutions have been
obtained. The results have been compared with those of Xu et al.
[16], Kumari et al. [17], Sparrow et al. [21], Pop [22], Nazar et al.
[23] and Chen and Radulovic [24]. It may be remarked that our
analysis supplements the results of the flow problem studied by
Xu et al. [16] who presented the results for Newtonian and
dilatant fluids (NZ1), whereas we have given the flow and heat
transfer results mostly for pseudoplastic fluid (No1). The results
presented here may be useful to chemical engineers in selecting
appropriate non-Newtonian fluid as a working fluid so that the
surface shear stress and heat transfer rate can be controlled. At
present our results may not have any direct industrial application.
However, they could be useful if the quantitative design
procedures for industrial processing operations using the results
of fluid-mechanical, rheological and molecular researches are
developed. Although exact modelling of a physical situation, in
general, is quite difficult, some simple mathematical model like
the present one can express its average behaviour for some
physical situations.

2. Non-Newtonian models

In this section, we have briefly discussed some of the non-
Newtonian fluid models. Non-linear fluid rheology is encountered
in several practical situations and the study of non-Newtonian
fluid motion is an important topic. Among the most popular
rheological models for non-Newtonian fluids is the power-law or

Ostwald-de Waele model [25]. This model is a simple non-linear
equation of state for inelastic fluids which includes linear
Newtonian fluids as a special case. The power-law model provides
an adequate representation of many non-Newtonian fluids over
the most important range of shear rates. This, together with its
apparent simplicity, has made it a very attractive model both in
analytical and numerical research. The constitutive equation for a
power-law fluid can be expressed as [25,26]

T ¼�pIþKðtrA2
Þ

n�1
2 A: ð1Þ

Here, the Cauchy stress tensor T is expressed in terms of the
pressure p, the material constant K, power-law index n and the
identity matrix I, while the first Rivlin–Ericksen tensor A is
defined in terms of the velocity vector V as

A¼ ðgrad VÞþðgrad VÞT : ð2Þ

The above constitutive equation represents shear-thinning (pseu-
do-plastic) fluids for no1 and shear-thickening (dilatant) fluids
for n41, whereas n=1 corresponds to Newtonian (i.e., linear)
rheology. Pseudoplastic fluids such as water-based polymer muds
and soap solutions and suspensions are non-Newtonian and can
be represented by power-law model. However, this model is not
suitable for elastic fluids.

In some industrial processes slightly viscoelastic fluid or highly
viscoelastic fluid such as polymer melts, like high-viscosity
silicone oils are used. The constitutive equation for viscoelastic
homogenous fluid of second-order is given by Rivlin and
Ericksen [27]

T ¼�pIþmA1þa1A2þa2A2
1; ð3Þ

where T is the stress tensor, p is the pressure, I is the identity
matrix, a1 and a2 are the normal stress moduli and A1 and A2 are
defined as

A1 ¼ ðgrad VÞþðgrad VÞT ;

A2 ¼ ðd=dtÞA1þA1 � grad Vþðgrad VÞT � A1: ð4Þ

Here V denotes the velocity field and d/dt is the material time
derivative. Some assumptions on the sign of a1 in Eq. (3) is
required. For thermodynamic reasons, the material parameter a1

must be positive [28]. If the fluid of second order modelled by
Eq. (3) is to be compatible with thermodynamics and is to satisfy
the Clausius–Duhem inequality for all motions and the assump-
tion that the specific Helmholtz free energy of the fluid is a
minimum when it is locally at rest, then

mZ0;a1Z0;a1þa2 ¼ 0: ð5Þ

Rajagopal [29] has observed that for the viscoelastic fluids of
second order, the equations of motion are, in general, one order
higher than the Navier–Stokes equations and, in general, need
additional boundary conditions to determine the solution com-
pletely. These issues were discussed in detail by Rajagopal [29,30],
Rajagopal and Gupta [31] and Ariel [32]. It may be remarked that
the use of the second-grade model governed by (3) is questionable
since this simple rheological model is good only for slow flows
with small levels of elasticity. But in many cases, the elasticity
(or Weissenberg number) can be quite large [2]. Moreover, as
mentioned in [28,33] there are some serious concerns about the
sign and magnitude of model parameters appearing in a second-
grade model such that the relevance of results obtained using this
model is suspected even at small elasticity numbers.

In view of the limitations of the second-grade model
mentioned above, it would be appropriate to use more realistic
models such as upper-convected Maxwell, Phan-Thien-Tanner
and Giesukus models [34] to simulate fluid flows. Recently,
Sadeghy et al. [35,36] have studied Sakiadis and stagnation flows,
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