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a b s t r a c t

A concise method has been formulated for identifying a set of forces needed to constrain the behavior of

a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion

constraints described by non-holonomic equations that are inherently non-linear in velocity. An

expression in vector form is obtained for each force; a direction is determined, together with the point

of application. This result is a consequence of expressing constraint equations in terms of dot products

of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint

forces in vector form are used together with two new analytical approaches for deriving equations

governing motion of a system subject to such constraints. If constraint forces are of interest they can be

brought into evidence in explicit dynamical equations by employing the well-known non-holonomic

partial velocities associated with Kane’s method; if they are not of interest, equations can be formed

instead with the aid of vectors introduced here as non-holonomic partial accelerations. When the

analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary

to expend the labor first to form the former, larger set and subsequently perform matrix

multiplications.

Published by Elsevier Ltd.

1. Introduction

Motion constraints imposed on a mechanical system are
described with non-holonomic (non-integrable) constraint equa-
tions, whereas configuration constraints are expressed with
holonomic constraint equations. Two examples of motion con-
straints with which the reader may be familiar are the condition
of rolling, which is the absence of slipping, and the restriction on
velocity imposed by a sharp-edged blade. These constraints are
sometimes described with equations written in the matrix form
auþb¼ 0, where u is a column matrix of motion variables
u1; . . . ;un. Motion variables, also referred to as generalized speeds,
are in general linear combinations of the time derivatives of
generalized coordinates, _q1; . . . ; _qn. The distinguishing feature of
such equations is that they are linear in the motion variables.
However, one may consider motion constraints that must be
described by relationships that are inherently non-linear in the
motion variables, having the form f ðq1; . . . ;qn;u1; . . . ;un; tÞ ¼ 0. In
Ref. [1] Bajodah et al. review some of the literature dealing with
non-linear non-holonomic constraint equations and consider it
important to study them because they can arise in connection
with servo-constraints or program constraints when a control

system enters the picture. As explained in Refs. [2,3], such
constraints are enforced by application of control forces as
opposed to the forces present when bodies and particles come
into contact with one another, as is the case with classical, passive
constraints.

Golubev states in Ref. [4] that, as of yet, there is no example of
a passive mechanical device that can compel a motion constraint
described by an equation that is non-linear in velocity. Roberson
and Schwertassek note in Ref. [5] that all known motion
constraints imposed on purely mechanical systems can be
expressed with relationships that are linear in velocity variables.
Unfortunately, the relationships in such situations are often
artificially teased into non-linear forms to create contrived
examples used to illustrate a proposed procedure. For instance,
a non-linear equation is devised in Ref. [6] to describe the
constraint imposed on a rolling disk. The well-known Appell–
Hamel mechanism is studied and discussed, for example, in
Refs. [1,7–12]. It is recognized in Refs. [1,8–12] that the
constraints imposed on this mechanical system can be expressed
with linear relationships, but despite this the mechanism is used
in Refs. [1,11,12] to demonstrate the application of methods for
dealing with non-linear non-holonomic constraint equations. In
Refs. [13,14], Zekovich offers several examples of passive
mechanical systems in which the constraints are described with
non-linear non-holonomic constraint equations. In what follows it
is shown that the associated constraints can in fact be expressed
with linear non-holonomic equations. Another example studied in
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Refs. [8,15–17] involves a device proposed by Benenti in Ref. [18].
However, a purely mechanical system is involved and therefore,
according to the observations in Refs. [4,5], the non-linear non-
holonomic equation used to describe the constraint must be
regarded as contrived.

Whenever a motion constraint can be expressed entirely with
linear non-holonomic constraint equations, it should be dealt
with accordingly. Any number of approaches can be used to deal
with the equations in their linear form; the exercise of cajoling
such equations into a non-linear appearance serves no useful
purpose. The new approaches contained in this paper, and the
examples of their application, are concerned strictly with
inherently non-linear non-holonomic constraint equations.

The literature contains several instances of motion constraints
described by non-holonomic equations that are inherently non-
linear in velocity. Perhaps the simplest case, provided by Golubev
in Ref. [4], involves a single particle P that is subject to a uniform
gravitational field and moves in a vertical plane fixed in an inertial
reference frame N. The magnitude of the velocity NvP of P in N is to
remain constant. The particle thus constrained serves as a model
of a robot manipulator tip used to spray-paint a wall or polish a
surface. Variations of this problem are studied in Refs. [19–21]. A
familiar example proposed by Appell, in which P moves in three
dimensions, is discussed in Refs. [7,15,19,22,23]. Special cases
of Appell’s problem are examined in Refs. [20,24]. Control of
an inverted pendulum constitutes an example studied in
Refs. [15,16]. A thin rigid rod moves in a vertical plane in the
presence of a uniform gravitational field, with the lower end of
the rod always in contact with a horizontal line. The system is
referred to as Marle’s servomechanism; as proposed in Ref. [7], an
actuator controls the horizontal displacement of the rod’s lower
end according to some control law in order to keep the rod
vertical. An earlier paper by Huston and Passerello [25] considers
the more general case of balancing a pole whose lower end
remains in contact with a horizontal plane, while the pole is
otherwise free to move in the space above the horizontal plane.

The forthcoming developments in this paper are carried out for
the most part in terms of vectors. These quantities are used also in
expressing the main results, and discussing the contributions of
the work. By vector we mean a basis-independent quantity having
direction and magnitude, such as position, velocity, acceleration,
or force, involved in the application of elementary principles of
dynamics to study motion taking place in three-dimensional
space. Other examples of a vector include partial velocities and
partial angular velocities associated with advanced principles of
dynamics. We do not mean a row or column matrix whose
elements consist of three basis-dependent scalar measure
numbers of a vector. Nor do we have in mind a matrix containing
more than three scalar elements, such as a collection of general-
ized forces, or a row or column matrix considered from the
viewpoint of linear algebra to belong to an n-dimensional tangent
space, orthogonal space, etc.

In Ref. [26], a comprehensive, consistent, and concise method
is established for identifying a set of forces needed to constrain
the behavior of a mechanical system modeled as a set of particles
and rigid bodies. The method is exercised in Ref. [27] with an
example involving a configuration constraint, and a motion
constraint expressed with an equation that is linear in velocity.
The purpose of this paper is to apply the method to constraints
described by non-holonomic equations that are inherently non-
linear in velocity. (It is to be understood that the term ‘‘velocity,’’
used in the general case of a system of particles, subsumes
‘‘angular velocity’’ in the special case in which a subset of particles
makes up a rigid body. The term ‘‘acceleration’’ likewise
encompasses an angular counterpart.) An essential feature of
the method consists of expressing constraint equations in vector

form rather than entirely in terms of scalars and matrices as is
customary. A constraint equation that has been differentiated
once or twice with respect to time, so that it contains the
acceleration of a point or the angular acceleration of a rigid body,
is said to be written at the acceleration level. Likewise, a
constraint equation at the velocity level is one that has been
differentiated at most once, so that it contains the velocity of a
point or the angular velocity of a rigid body. It so happens that the
method discussed in Refs. [26,27] can be applied whenever
constraints can be described at the acceleration level by a set of
independent equations that are linear in acceleration; therefore, it
is applicable to constraint equations that are non-linear in
velocity when written at the velocity level.

The method in question yields expressions in vector form for
constraint forces, and for torques of couples formed by constraint
forces (hereafter referred to as constraint forces and constraint
torques). Thus, the directions of these vectors are identified,
together with the specific point at which a constraint force must
be applied, and the particular body upon which a constraint
torque must be exerted. Such information about the vector
quantities is of interest in its own right, and is to be preferred
over the information contained in a matrix whose elements are
scalar generalized constraint forces. In the process of constructing
generalized constraint forces, information about the direction,
magnitude, and point or body of application of constraint forces
and torques becomes lost; in principle, each generalized con-
straint force is a sum of contributions from every constraint force
and torque acting on a mechanical system. Although generalized
constraint forces can be computed in a straightforward manner
from knowledge of constraint forces and torques, usually it is
impractical to invert the process and recover the original
information about constraint forces and torques from generalized
constraint forces.

Anderson is concerned in Ref. [28] with configuration
constraints and with motion constraints described by non-
holonomic equations that are linear in the motion variables.
Although such constraints are not the direct subject of the present
investigation, Anderson makes an observation that is nevertheless
relevant to our discussion. Often, a Lagrange multiplier or
undetermined multiplier used to treat a constrained system is
not related in a clear way to any particular constraint force or
torque. In the method introduced here, each multiplier has a
straightforward relationship to a constraint force and/or torque.

The emphasis in this paper is on analytic derivation of
equations of motion that do or do not contain evidence of forces
and torques needed to impose motion constraints described with
inherently non-linear non-holonomic equations. This stands in
contrast to methods of computational dynamics, where the object
is numerical formulation and solution of equations of motion.
With knowledge of constraint forces and torques obtained by
inspection of constraint equations written in vector form, and the
two new approaches developed here, the analyst can form explicit
equations of motion by hand or with the aid of symbolic algebra
software. Equations that do not contain evidence of constraint
forces can be formed directly; they need not be obtained from
numerical manipulations of equations in which evidence of
constraint forces is present.

The remainder of the paper is organized as follows. First, a
treatment of non-linear non-holonomic constraint equations is
undertaken in Section 2 for a generic system of particles; the
results are applicable whether or not a subset of particles makes
up a rigid body. The method of Ref. [26] is used to identify
directions of constraint forces and the particles to which they
must be applied. The constraint forces are used together with
extensions to Kane’s method [30] to obtain two new ways of
deriving dynamical equations of motion. The first of these is
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