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a b s t r a c t

The problem of a uniform cantilever beam under a tip-concentrated load, which rotates in relation with

the tip-rotation of the beam, is studied in this paper. The formulation of the problem results in non-

linear ordinary differential equations amenable to numerical integration. A relation is obtained for the

applied tip-concentrated load in terms of the tip-angle of the beam. When the tip-concentrated load

acts always normal to the undeformed axis of the beam (the rotation parameter, b¼ 0) there is a

possibility of obtaining non-unique solution for the applied load. This phenomenon is also observed for

other rotation parameters less than unity. When the tip-concentrated load is acting normal to the

deformed axis of the beam ðb¼ 1Þ, many load parameters are obtained for a tip-angle with different

deformed configurations of the beam. However, each load parameter corresponds to a tip-angle, which

confirms the uniqueness on the solution of non-linear differential equations.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Barten [1,2], Bisshopp and Drucker [3] and Frisch-Fay [4] have
studied the non-linear bending of cantilever beam subjected to
end loads. The problem has been solved in terms of elliptic
integrals [3,5] as well as using different numerical techniques
[6–9]. Rao and Rao [11] and Rao et al. [12] have examined the
large deflection behavior of a cantilever beam subjected to a tip-
concentrated load (P), which rotates ðbfð0ÞÞ in relation with the
tip-rotation, fð0Þ of the beam shown in Fig. 1. In all these studies
only one equilibrium shape was obtained for a beam with a
prescribed tip-concentrated load. Wang [10] and Navaee and
Elling [13] have studied the large deflection of cantilever beams
subjected to inclined end loads. They have found that for each
combination of the beam and loading condition, there are certain
numbers of equilibrium configuration for the beam. Some
interesting studies were made on the multiple equilibrium
solutions of the uniform cantilever under a dead load (rotation
parameter, b=0) [14–17] and analytical solutions for follower
force (b=1) [18,19].

Recently, Shvartsman [20] has presented a direct method for
the large deflection problem of a cantilever beam under a tip
follower force (b=1). The results were found to be in good
agreement with Rao and Rao [11] for b=1. This method fails to

give the results of Rao and Rao [11] for ba1. The method of
Shvartsman [20] needs two times of integration for the specified
load parameter. First time integration gives the tip-angle for the
specified load parameter in addition to the slope (f(s)) of the
deformed beam from the free end. Tip-coordinates of the beam
are obtained by evaluating the integrals through the Simpson’s
rule. Specifying the tip-deflections and the tip-angle for the load
parameter and integrating the resultant differential equations, the
deformed configuration of the beam can be obtained. Shvartsman
[20] presents only the tip-angle and the tip-deflections for the
specified load parameter for which one time integration is
sufficient. To obtain the deformed configuration of the beam
accurately, it is essential to convert the integrals into differential
equations and integrate the non-linear differential equations
specifying the obtained tip-angle and tip-deflections for the load
parameter. Otherwise, large amount of f(s) data has to be stored
for evaluation of the integrals to obtain the deformed configura-
tion of the beam from the first integration. Further, the complex-
ity of storing the data enhances with increase in the load
parameter.

It is also noted from the numerical results [20] that there
is a possibility of different load parameters for a specified tip-
angle of a uniform cantilever beam. The problem of a uniform
cantilever beam under tip-concentrated load, which rotates in
relation with the tip-rotation of the beam is studied here. A
general method is proposed for the rotation parameter bA ½0;1�. A
relation is obtained for the load versus tip-angle of the beam to
obtain the load parameter for a specified tip-angle. The deformed
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configurations of the beam are obtained by solving directly the
resulting non-linear differential equations through fourth-order
Runge–Kutta integration scheme.

2. Theoretical formulation

The formulation of the problem is mainly based on an
important relation of the flexural theory (i.e.,M=EI¼ 1=r¼
df=ds); the quantity 1=r (the curvature of the deflected axis of
the beam) characterizes the magnitude of bending deformation,
which is proportional to the bending moment, M and inversely
proportional to the product EI, called the flexural rigidity of the
beam.

The moment–curvature relationship of a uniform cantilever
beam (see Fig. 1) subjected to a tip-concentrated rotational load
(P) is as follows: [11]

EI
df
ds
¼ P cos bfð0Þ

� �
ðX�XaÞþP sin bfð0Þ

� �
ðY�YaÞ ð1Þ

where

XðsÞ ¼

Z L

s
cosfðZÞdZ ð2Þ

YðsÞ ¼

Z L

s
sinfðZÞdZ ð3Þ

Here E is the Young’s modulus, I is the moment of inertia, L is the
length of the beam, Z is a dummy variable, fð0Þ is the tip-angle of
the beam and b is rotation parameter, which lies between 0 and 1.
At s=0, Eqs. (2) and (3) give tip-coordinates ðXa;YaÞ of the beam.
The rotation parameter b=0 represents the problem with tip-
concentrated load, which always acts normal to the undeformed
axis of the beam, whereas b=1 represents the problem under a
tip-concentrated load acting normal to the deformed axis of the
beam.

Differentiating Eqs. (1)–(3) with respect to s, the following
system of equations are obtained:

EI
d2f
ds2
þP cos bfð0Þ�f

� �
¼ 0 ð4Þ

dX

ds
¼�cosf ð5Þ

dY

ds
¼�sinf ð6Þ

Boundary conditions for differential Eqs. (4)–(6) are

At the tip of the beam (s=0)

df
ds
¼ 0 ð7Þ

At the root of the beam (s=L)

f¼ 0; X ¼ 0; Y ¼ 0 ð8Þ

The solution of Eqs. (4)–(8) is obtained in terms of elliptic
integrals for one equilibrium deformed configuration of the beam
[11]. The problem governed by the second-order non-linear
differential Eq. (4) with the conditions (7) and (8) is solved using
the fourth-order Runge–Kutta integration scheme. Initially the
two-point boundary value problem is converted to an initial value
problem by estimating the tip-angle, fð0Þ as one of the required
initial condition for the specified load, in an iterative procedure,
so as to satisfy the other boundary condition at the root of the
beam (i.e., f=0 at s=1) [12]. The tip-coordinates (Xa,Ya) of the
beam are obtained by evaluating the integrals in Eqs. (2) and (3)
using the Simpson’s one-third rule. The deformed configuration of
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Fig. 1. A uniform cantilever beam under a tip-concentrated load (P), which rotates

ðbfð0ÞÞ in relation with the tip-rotation ðfð0ÞÞ of the beam.
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Fig. 2. Variation in tip-angle, fð0Þ with the rotation parameter (b) at which the

load parameter (l) is undefined.

0 0.2 0.4 0.6 0.8 1
180

200

220

240

260

280

300

320

340

360

tip
-a

ng
le

, φ
 (0

) 
(d

eg
)

rotation parameter, β 

Fig. 3. Extreme value of tip-angle, fð0Þ with the rotation parameter (b) beyond

which the solution of the problem does not exist.
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