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a b s t r a c t

In this work, an analytical solution for the fluid behavior over flat plates with impulsive and oscillating

motions, starting from rest, and with wall transpiration, is presented. The classical solution of this

problem is given by Panton [7] and is found to be an especial case of the solution here presented. The

analytical solution is obtained without the use of any special transformations, such as Laplace or Fourier

transforms. Instead, an extension of the variable separation technique is used together with similarity

arguments. A non-dimensional number—the transpiration rate—is used to take into account the

injection or suction of fluid at the wall. This parameter is shown to be of great influence on the proposed

velocity solution.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The viscous flow a newtonian fluid can be described by the
Navier–Stokes equations. These nonlinear partial differential
equations form a very complex system, with a small number of
exact solutions.

Although the exact solutions are limited to particular combi-
nations of simple geometry and boundary conditions, they
provide a great insight on more complex flow situations. In
addition, exact solutions are very useful to assess the accuracy of
approximate numerical and theoretical procedures as well as
experimental practices.

One class of problems with known analytical solutions are the
so-called Stokes problems. For a flat plate, these problems are
related to the motion induced by an oscillating infinite plane wall
in contact with a viscous fluid when the wall presents harmonic
oscillations in the longitudinal direction. In first problem of Stokes
[8], the wall is initially at rest and a transient flow is induced to
the fluid by the suddenly application of an impulsive motion. In
the second problem of Stokes, the motion is generated by an
oscillating plate. In time, the transient motion vanishes and the
fluid velocity at any point is just a harmonic oscillation with the
same wall frequency. The latter problem was solved by Stokes [9].
The solution of the former problem, in closed form and in terms of
tabulated functions, was given by Panton [7], who considered the
solution to be a summation of transient and steady state parts.
Erdogan [4] solved this problem through a Laplace transform
technique. Using the same technique, Liu and Liu [6] proposed a

solution for the extended Stokes problem, for a finite depth flow.
Finally, Erdogan and Imrak [5] calculated the solution using the
Fourier transform technique.

A more general solution for the Stokes problems can be
derived when fluid transpiration at the wall is considered. The
governing equations must then be modified with the addition of a
new term representing the momentum introduced into the flow
by the transpiration of fluid. This solution has significant
application in boundary layer control with important examples
in manufacturing techniques, aeronautical systems, chemical and
mechanical engineering processes. The analysis to be developed
here can also be applied to a more general problem—when the
wall velocity is an arbitrary function—by using a Fourier series to
represent the arbitrary condition and solving a sequence of Stokes
problems.

In this paper, the analytical solution of the mentioned Stokes
problems with addition of wall fluid injection or suction is
presented. To the best of authors knowledge, this the first time
that such a closed solution is presented. The solution shown here
in the case of zero-transpiration rate reduces to the solution of
Panton [7]. The proposed solution does not resort to a space
transformation. Instead, a modified version of the variable
separation technique is evoked. The final form uses the com-
plementary complex error function. The solution when the plate
has a impulsive start with wall transpiration is also presented and
it turns out to be a specific case of Stokes transient solution.

In a recent article, Cruz and Pinho [2] solved the second Stokes
problem for upper convected Maxwell (UCM) fluids. They used an
approach similar to the one shown here, however, just the fully
developed flow was analyzed.

The outline of the rest of this paper is as follows. In the second
section, the basic equation for the Stokes transient and steady-state
problems are shown. In the third section, the analytical solutions
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are developed. Next, some results are presented and physical
interpretations are given. Finally, some conclusions are drawn.

2. Basic equations

The Stokes problem considered here is stated as follows:
consider a fluid with viscosity n, initially at rest, occupying a half
plane yZ0 and bounded on the x-axis by an infinite plane wall. At
time t40 the wall moves in x-direction with velocity given by
uw(t). The fluid velocity u� uðy; tÞ is described by the Navier–
Stokes equation, which can be cast as

@u

@t
þVw

@u

@y
�n @

2u

@y2
¼ 0 for y40 and t40 ð1Þ

where Vw is the transpiration velocity.
The boundary and initial conditions are

u¼ uwðtÞ ¼ u0 expðiotÞ at y¼ 0; t40 ð2Þ

u¼ 0 at y-1; t40 ð3Þ

u¼ 0 at y¼ 0; t¼ 0 ð4Þ

where u0 is the maximum amplitude of wall velocity oscillation,
o is the frequency of the wall velocity and i¼

ffiffiffiffiffiffiffi
�1
p

is the
imaginary constant. Using the wall velocity given in expression
(2), the sine and cosine oscillations can be treated by taking the
real and imaginary parts of the velocity field. Note that the cosine
oscillation presents a discontinuity at t=0, when the wall velocity
jumps from zero to u0 differently from the sine function, which
represents a more realistic situation. To keep the generality of
solution presented here, the solution when a cosine oscillation is
imposed on the flow is shown.

Consider the set of non-dimensional variables

U ¼
u

u0
; t¼ot; Z¼ y

o
n

� �1=2

; x¼ Vw=
ffiffiffiffiffiffiffiffiffiffi
4on
p

ð5Þ

which can be used to transform Eq. (1) according with

@U

@t
þ2x

@U

@Z
�
@2U

@Z2
¼ 0 for Z40 and t40 ð6Þ

and the boundary conditions (2)–(4)

U ¼ expðitÞ at Z¼ 0; t40 ð7Þ

U ¼ 0 at Z-1; t40 ð8Þ

U ¼ 0 at Z¼ 0; t¼ 0 ð9Þ

Eq. (1) is the classical second problem of Stokes [8] with wall
transpiration. The closed form solution to this set of equations,
without transpiration, was given by Panton [7].

3. Solution technique

3.1. Periodic solution

The periodic solution is found after the start up phase effect
dies out and the fluid experiments a harmonic motion with the
same frequency of the wall. Further on, when we consider
the start up phase, this solution will be useful. To the best of the
present author’s knowledge, this solution cannot be found in
literature as fluid injection is present. A solution for this problem
is developed in this section. The idea is to obtain an ordinary
differential equation from Eq. (6), by taking a linear combination
of the independent variables.

Consider that the horizontal velocity can be written as a
function of j¼ AtþBZ or U ¼UðjÞ and that A, B are two complex

constants, so that

@U

@t ¼ A
dU

dj
@U

@Z ¼ B
dU

dj and
@2U

@Z2
¼ B2 d2U

dj2
ð10Þ

Substitution of the above equations into Eq. (6), gives

Aþ2xB

B2

dU

dj ¼ B2 d2U

dj2
ð11Þ

The solution of this equation is

UðjÞ ¼ C1
B2

Aþ2xB
exp

Aþ2xB

B2
j

� �
þC2 ð12Þ

The constants can be determined through the boundary condi-
tions

Uðt;Z¼ 0Þ ¼Uðj¼ AtÞ ¼ eit ð13Þ

Uðt;Z-1Þ¼Uðj¼ BZÞ ¼ 0 ð14Þ

so that, C1 ¼ ðAþ2xBÞ=B2, C2 =0 and A2þ2xBA�iB2
¼ 0.

A relation between constants A and B can then be immediately
established,

B¼ ið�x7
ffiffiffiffiffiffiffiffiffiffiffi
x2
þ i

q
ÞA ð15Þ

The following simplification is obtained:

Uðt;ZÞ ¼ exp i tþ B

A
Z

� �� �
ð16Þ

To satisfy the second boundary condition in Eq. (14), we must
have

Re i
B

A

� �
r0 ) Re½�x7

ffiffiffiffiffiffiffiffiffiffiffi
x2
þ i

q
�Z0 ð17Þ

where Re(z) is the real part of the complex argument z.
Parameter x can be either positive (injection) or negative

(suction), but the term
ffiffiffiffiffiffiffiffiffiffiffi
x2
þ i

q
is strictly positive. The only way to

maintain condition (17) is taking the positive sign at expression
(15). Then, the final solution to the non-transient second problem
of Stokes with transpiration can be written as

U ¼ exp½i tþZðx�
ffiffiffiffiffiffiffiffiffiffiffi
x2
þ i

q
Þ� ð18Þ

For the no-injection case, x¼ 0, we have

U ¼ exp �
Zffiffiffi
2
p

� �
cos t� Zffiffiffi

2
p

� �
þ i sin t� Zffiffiffi

2
p

� �� �
ð19Þ

Note that Eq. (19) is the exact solution to non-transient problem
found by Stokes [9].

3.2. Start-up phase solution

Considering the horizontal velocity as a function U ¼ ejFðt;ZÞ,
with j¼ AtþBZ, Eq. (6) can be cast as

@F

@t
þ2ðx�BÞ

@F

@Z
þFðAþ2xB�B2tÞ ¼

@2F

@Z2
ð20Þ

Since A and B must satisfy Aþ2xB�B2 ¼ 0 (see Eq. (15)), we have

@F

@t
þ2ðx�BÞ

@F

@Z
¼
@2F

@Z2
ð21Þ

Take F � FðkÞ as a function of k with the decomposition
k¼ ð ~Atþ ~BZÞgðtÞ where ~A, ~B are two complex constants (there is
no need to compute the values of these two constants since they
cancel out in the calculations).

Substitution of k into Eq. (21), gives

ð ~Atþ ~BZÞg0 þð ~Aþ2x ~B�2B ~BÞg

~B
2
g2

dF

dk
¼

d2F

dk2
ð22Þ
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