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a b s t r a c t

On the basis of the Bernoulli–Euler beam theory, the stability and instability of a double-beam system

subjected to compressive axial loading is investigated. It is assumed that the two beams of the system

are simply supported and continuously joined by a Winkler elastic layer. Each pair of axial forces

consists of a constant part and a time-dependent stochastic function. By using the direct Lyapunov

method, bounds of the almost sure stability and instability and uniform stochastic stability of a double-

beam system as a function of viscous damping coefficient, bending stiffness, stiffness modulus of the

Winkler layer, variances of the stochastic forces, and intensity of the deterministic components of axial

loading are obtained. When the almost sure stability and instability are investigated, numerical

calculations are performed for the Gaussian process with a zero mean as well as a harmonic process

with random phase. When axial forces are white noise processes, conditions for uniform stochastic

stability are determined.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Beam-type structures are widely used in many branches of
civil, mechanical and aerospace engineering. The dynamic pro-
blems of single beams based on Bernoulli–Euler theory have been
studied by many researchers.

An important technological extension of the concept of the
single beam is that of the elastically connected double-beam
system. Such a system is another model of a complex continuous
system consisting of two one-dimensional solids joined by a
linear, elastic layer of Winkler type. Various problems of dou-
ble-beam systems occupy an important place in many fields of
structural and foundation engineering. In many of the soil–
structure interaction problems, the elastic foundation has been
usually modelled by a Winkler elastic layer. It is also known that
one beam and elastic layer of a double-beam system can be
considered as a continuous dynamic absorber to suppress the
vibration of another beam subjected to a dynamic force. Elasti-
cally connected beams are used by Chen and Sheu [1] as an
approximate model for vibration analyses of composite materials
or by Ru [2] as continuous system models for carbon nanotubes.
The elastic layers provide a linear model for inter-atomic Van der
Waals forces.

Having in mind the possibly wide applications in various areas
of technology, the dynamics of the double-beam system is a
subject of great interest. With arbitrary boundary conditions and
forcing functions, the problem is difficult to solve because the
governing partial differential equations are coupled. However,
under certain conditions, the problem becomes trackable.

Natural frequencies and buckling stresses of a deep beam–
column on two-parameter elastic foundations by taking the effect
of shear deformations, depth change and rotatory inertia are
analysed by Matsunga [3]. The vibration of a double-beam system
consisting of a main beam with an applied force, and an auxiliary
beam with a distributed spring and dashpot in parallel between
the two beams, is studied by Vu et al. [4]. Seelig and Hoppman II
[5] present the development and solution of the differential
equations of motion of an elastically connected double-beam
system subjected to an impulsive excitation. The main beam is
subjected to a completely arbitrary forcing function which can be
either concentrated at any point or distributed. The complete
exact theoretical solutions of the free vibrations of simply
supported Bernoulli–Euler double-beam system are treated by
Oniszczuk [6]. The eigenfrequencies and mode shapes of vibration
of the considered double-beam system are found using the
classical assumed mode summation. Also, the presented theore-
tical analysis is illustrated by a numerical example, in which the
effect of physical parameters characterizing the vibrating system
on the natural frequencies is investigated. The dynamic response
of a double-beam system traversed by a constant moving load is
studied by Abu-Hilal [7]. The effect of the moving speed of the
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load and the damping and the elasticity of the viscoelastic layer
on the dynamic responses of the beams are investigated in detail.
The free vibration frequencies of beams system having to the ends
translation and rotation elastic constraints are determined by De
Rosa and Lippiello [8]. However, these studies are limited to the
cases with negligible axial loads.

The free vibration and buckling of a double-beam system
under deterministic axial loading are studied by Zhang et al. [9].
It is supposed that the buckling can only occur in the plane where
the double-beam system lies. The effects of compressive axial
load on the properties of forced transverse vibration of a double-
beam system are investigated by Zhang et al. [10]. A general
theory for the determination of natural frequencies and mode
shapes for a set of elastically connected axially loaded Bernoulli–
Euler beams is developed by Kelly and Srinivas [11]. In the special
case of identical beams, it is shown that the natural frequencies
are organized into sets of intramodal frequencies in which each
mode shape is a product of a spatial mode and a discrete mode.
When studying the equation for a single axially loaded beam,
numerical difficulties arise in the determination of natural fre-
quencies due to the presence of exponentially large terms, as is
noted by Williams [12]. Stochastic stability of a double-beam
system subjected to small intensity white noise excitation is
investigated by Kozić et al. [13].

The purpose of the present paper is the investigation of the
almost sure stability and instability as well as uniform stochastic
stability of a double-beam system as a function of damping
coefficients, variances of the stochastic forces, bending stiffnesses,
stiffness modulus of the Winkler layer and intensity of the
deterministic components of axial loading. The principal contri-
bution of this paper is to clearly fix the boundaries of stability,
uncertainty and instability regions when the system is loaded at
one or both beams.

The present paper is organized as follows. For the governing
differential equations, the definition of almost-sure and uniform
stochastic stability is given in Section 2, the Lyapunov functional
is constructed in Section 3 as a measure of distance between the
solution and the trivial one. The conditions of almost-sure
stability and instability are obtained in Sections 4 and 5, while
the condition for uniform stability is obtained in Section 6. The
numerical procedure of determining the boundaries of stability
and instability, as well as the analysis of obtained results, is given
in Section 7. Section 8 ends the paper with concluding remarks.

2. Problem formulation

Let us consider the system which is composed of two parallel,
slender, prismatic, and homogeneous beams continuously joined
by a Winkler elastic layer. Both beams have the same length and
are simply supported at their ends. The beams are subjected to
axial compressions F1 and F2 as is shown in Fig. 1.

On the basis of the Bernoulli–Euler theory, and assuming that
both the rotary inertia and shear deformation are negligible, the
coupled governing differential equations for transverse vibrations

of the system can be expressed by
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where wi (i¼1,2) denotes the transverse beam displacement, ri is
the mass density, ci is the viscous damping coefficient, X is the
axial coordinate, t is the time, EiIi is the bending stiffness of the
beam, K is the stiffness modulus of the Winkler elastic layer, and
F1(t),F2(t) are time-dependent stationary stochastic processes.

Boundary conditions corresponding to simply supported edges
have the form:
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where L is the length of the beams.
Let us assume that products r1A1 and r2A2 are equal

(r1A1¼r2A2¼rA) but the individual parameters can be arbitrary.
The following parameters can be used to non-dimensionalize
equations (1):
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where bi, ei and K are damping coefficient, reduced stiffness and
reduced stiffness of the Winkler layer, respectively, foi and fi(t) are
reduced constant and stochastic component of axial forces.

Now, they have the form
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The purpose of the present paper is the investigation of almost
sure asymptotic and uniform stochastic stability of the double-
beam system subjected to stochastic time-dependent axial loads.
To estimate perturbated solutions, it is necessary to introduce a
measure of distance 99U99 of solutions of Eqs. (5) and (6) with non-
trivial initial conditions and the trivial one. Following Kozin [14],
the equilibrium state of Eqs. (5) and (6) is said to be almost surely
stochastically stable, if:

P lim
t-1

:wð:,tÞ:¼ 0

� �
¼ 1, ð7Þ

where w¼col(w1,w2) is the matrix column.
In the case when the loadings are broad-band Gaussian

processes which can be treated as white noises, we investigate
the uniform stochastic stability of the trivial solution, i.e. we
formulate conditions implying the following logical sentence:
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3. Lyapunov functional construction

The problem formulated in the previous section we will solve
by using the Lyapunov functional method. One of the first general
methods of constructing Lyapunov functional for deterministic
systems was given by Parks and Pritchard [15]. Plaut and Infante
[16] provided the construction of Lyapunov functional for con-
tinuous systems subjected to random excitation, while Kozin [14]
introduced the best functional. For the study of stability ofFig. 1. The physical model of an elastically connected double-beam system.
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