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This paper presents determination of equilibrium paths for Mises trusses with different ratio of height
to span. Unsymmetrical deformation modes are considered and the structure is treated as a two DOF
system. First, a few special equilibrium configurations are resolved from considerations of free body
diagrams. Complete equilibrium paths are determined by solving numerically the governing non-linear
equilibrium equations. The stability of possible equilibrium configurations is checked using the second
partial derivative test for the total potential energy. The positive definiteness of the appropriate Hessian
matrices is checked numerically using the Sylvester criterion.
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1. Introduction

It is a typical feature of instability theory that its fundamental
characteristics can be analyzed using very simple models, with one
or two degrees of freedom (DOFs) [1,2]. Moreover, even a very sim-
ple model based on unrealistic assumptions such as perfect unlim-
ited material elasticity can give us surprisingly complex results due
to large displacements and deformations. Many often such simple
example problems provide good insight into the stability of large
structural systems [3].

Considered here Mises truss [4,5] shown in Fig. 1 is an example of
a classical elastic system having numerous references in the litera-
ture. Under assumption that the truss is sufficiently shallow and de-
flects only symmetrically, it is usually treated as a single DOF system
to analyze the problem of “snap-buckling”. Although the system is
simple it features the buckling phenomenon of more complex struc-
tures such as slightly curved membranes and thin spherical shells
[6]. As the one DOF, symmetrical system it has been analyzed stati-
cally and dynamically in numerous variations, with added rotational
and longitudinal springs [6], dampers or main members subject to
bending [7]. However, there is little material available considering
steep trusses which are allowed to deform asymmetrically, and some
of such solutions [8] obtained with aid of finite element (FE) method
are qualitatively incorrect to some extent. The aim of this paper is
to determine all possible equilibrium paths of a Mises truss as a two
DOF system. Location of the limit and bifurcation points as well as
determination of the stable and unstable equilibrium states is also
under the consideration.

E-mail address: l.kwasniewski@il.pw.edu.pl

0020-7462/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijnonlinmec.2008.08.011

2. Description and notation

The considered system, shown in Fig. 1, consists of two equal pin-
jointed straight bars (or springs) sustaining only axial loading (infi-
nite flexural stiffness). The system is loaded with vertical, conserva-
tive force P = �EA0, where � is the loading parameter and EA0 is the
member's axial stiffness. Fig. 1 provides the notation of geometrical
variables applied in the following text and describing the initial and
deflected configurations. It is assumed that the members are elastic
and deform uniformly, and consequently the axial forces are propor-
tional to the axial strains. Only displacements within the xy plane
are allowed. Here, all possible equilibrium states, also unsymmetri-
cal, are sought without any restriction upon initial configuration.

For large deformations a convenient finite strain measure is the
Green–Lagrange [9] which, for axially deformed member, can be
expressed in local coordinate system as

��� =
�u�
��

+ 1
2

(
�u�
��

)2
, (1)

where � is the local coordinate along the member's axis and u�(�)
is the axial displacement field. Assuming uniform deformation along
the member we get

u�(�) = l − l0
l0

� → ��� = l2 − l20
2l20

, (2)

where l denotes current length. Finally the internal force induced in
an i-member with stiffness EA0 is given by

Ni = EA0
l2i − l20
2l20

. (3)
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Fig. 1. Mises truss with two DOF.

The following geometrical relations with notation presented in
Fig. 1 are used in the proceeding text:

s0 = sin �0 = H
l0
, c0 = cos �0 = 0.5S

l0
, l0 =

√
(0.5S)2 + H2,

s1 = sin �1 = H − y
l1

, c1 = cos �1 = 0.5S + x
l1

,

l1 =
√
(0.5S + x)2 + (H − y)2,

s2 = sin �2 = H − y
l2

, c2 = cos �2 = 0.5S − x
l2

,

l2 =
√
(0.5S − x)2 + (H − y)2. (4)

3. Selected equilibrium points

Fig. 2 shows the free-body diagram for the hinge C0, displaced to
an arbitrary position C. It illustrates equilibrium for two contracted
bars (with negative internal forces)

∑
X : px = −N1c1 + N2c2 = 0,

∑
Y : py = P + N1s1 + N2s2 = 0. (5)

Using (3) and (4) the equilibrium equations (5) can be written in a
different form as

− (l21 − l20)c1 + (l22 − l20)c2 = 0,

2�l20 + (l21 − l20)s1 + (l22 − l20)s2 = 0. (6)

The objective here is to find real roots of Eqs. (6) indicating loca-
tions of possible equilibrium and to check if they are stable or not.
Regardless of the selection of generalized coordinates as (�1, �2),
(l1, l2) or (x, y), Eqs. (6) are highly non-linear and it is difficult to
find their roots in a closed form.

First we try to determine a few locations satisfying (6). Fig. 3
shows three characteristic equilibrium locations C1, C2 and C3, in
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Fig. 2. Free-body diagram showing equilibrium for both bars contracted.
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Fig. 3. Location of two characteristic equilibrium points C1 and C2.

the first quadrant and Eqs. (7) give the corresponding solution
parameters

for C1 : l1 = l0, l2 = h, h =
√
H2 − 3

4 S
2, NC1

1 = 0,

NC1
2 = −2S2

4H2 + S2
EA0,

�C1 = 2S2

4H2 + S2
= 2

tan2 �0 + 1
,

for C2 : l1 = 1
2 S + H, l2 = − 1

2 S + H,

NC2
1 = −NC2

2 = 2HS
4H2 + S2

EA0, �C2 = 0,

for C3 : N
C3
1 = N

C3
2 = −2H2

4H2 + S2
EA0, �C3 = 0. (7)

For the point C1 we have vertical equilibrium between the load
and the internal force in the contracted member l2. For the point
C2 there is a horizontal equilibrium between internal forces in both
members (tension and compression) with zero loading. Similarly for
the point C3 the loading is equal to zero but now both members
are sustaining the same contraction. The presence of the points C1
and C2 is limited to the cases where the second member's length is
non-negative. The limit deflected positions are those where (theo-
retically) l2 is reduced to zero

for C1 : l2 = h�0 ⇒ H�

√
3
2 S and �0�60◦.

for C2 : l2 = H − 1
2 S�0 ⇒ H� 1

2 S and �0�45◦. (8)

Inequalities (8) lead us to an interesting result for the truss with
�0 = 60◦, with shown in Fig. 4 where both points C1 and C2 lay on
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