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1. Introduction

Many non-smooth factors arise very naturally in engineering ap-
plications, such as impacts, collisions, dry frictions and so on. Most of
the previous literatures fastened on the study of either non-smooth
non-linear deterministic systems or non-smooth linear stochastic
systems. For deterministic non-smooth systems, Shaw and Holmes
[1] investigated the dynamics of a periodically forced impact system.
Luo [2-5] and Xie [6] explored bifurcations and chaos of two-degree-
of-freedom linear vibro-impact systems by the Pioncaré map. In re-
cent years, the particular bifurcations unique to non-smooth systems
have been examined extensively [7-12].

For stochastic non-smooth systems, Feng [13,14] explored the
mean responses of a stochastic friction system and an impact sys-
tem by introducing the mean Poincaré map. Huang and Zhu [15]
obtained the stationary responses of a multi-degree-of-freedom
vibro-impact system under white noise excitations according to
the Hertz contact law. Zhuravlev [16] proposed a non-smooth vari-
able transformation to deal with non-smooth characteristics. Based
on the non-smooth variable transformation, recently, Dimentberg
and lourtchenko [17-22] studied the dynamics of linear stochastic
vibro-impact systems, including impact energy losses, the response
PDFs, subharmonic responses and stochastic chaotic responses.
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Namachchivaya [23,24] developed an averaging approach to study
the dynamic behaviors of a vibro-impact system with random per-
turbations.

As is well known, a response PDF is an important characteris-
tic of general non-linear stochastic systems, which appeals to ei-
ther averaging approach [25,26] or numerical simulations. The the-
ory of stochastic averaging approach has been proposed in Ref. [27].
In this paper, we will focus on the study of stationary response in
a non-linear stochastic vibro-impact system. The paper is organized
as follows. In Section 2, the transformed Duffing-Van der Pol sys-
tem is derived by using the non-smooth transformation. In Section 3,
stochastic averaging method is applied to deal with the transformed
system and the approximate stationary response PDFs are derived.
In Section 4, the directly numerical simulations verify the analyti-
cal results. Furthermore, stochastic bifurcations are also considered.
Conclusions are presented in Section 5.

2. Problem statement

Consider the following Duffing-Van der Pol vibro-impact system
under additive and multiplicative random excitations:
X+ w%x + (czx2 —Cc )X+ c3x3 =c4&1(8) + c5xéy(t), x>0, (1a)
Xy =-1x_, x=0, (1b)

where parameters cy, ¢, c3, ¢42, ¢s2 are assumed of order O(e), and
g is the natural frequency. r is the restitution coefficient which
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depicts impact losses and satisfies 0 <r < 1. Specially, the impact
is modeled as a classical elastic one when r = 1. £;(t) and &,(t) are
standard Gauss white noises and independent correlation, namely

odt), i=j,
0, i#,
Note that t, is the instant of impacts, namely, x(t.) = 0, which is not
given in advance. x4 and x_ are the velocities of system after and
before the instant of impacts t,, respectively, that is X+ = x(t, & 0).
Motion of system governed by Eq. (1a) is “unrestricted” until the
constraint condition x = 0 is satisfied. The impact condition (1b) is
then imposed.

Following Zhuravlev [15], the non-smooth transformation of state
variables is introduced as follows:

E[¢i]=0, E[i(t+dn)¢(0)] =

x=x1=yl, x=x;=ysgny, k=jysgny,
1, >0,
sgny:{_1 1< 2)

Note that the transformation (2) maps the domain x > 0 of original
phase plane (x, x) onto the whole phase plane (y,y). The transformed
equation of motion can be written by substituting (2) into Egs. (1) as

J+ @iy + [cay? — 11y + c3y = cas8n(y)E1 () + csyEp(t), Gt
(3a)

yy=1y_, t=t. (3b)
Obviously, the transformed velocity y is continuous in the special
case of elastic impact (i.e., r = 1) according to Eq. (3b). The jump of
transformed velocity y becomes proportional to 1—r instead of 1+r
for the jump of original velocity x. Since y(t, & 0) = y(t,) =0 and
¥+ = y(tx £ 0), the Dirac delta function can be introduced J(y) =
O(y(ts)) = o(t — t4)/1y(t+)l, which can be written as 6(t — t,) = [y|6(y).
Further, combining with y(t)o(t — ti) = y(t«)d(t — t.), the impulsive
term can be obtained:

V= = y4)0(t — t) = (1 = ryIyIo(y). (4)
From Egs. (3) and (4), the transformed equation can be made into
¥+ gy +ley? -l +c3y® = (r = 1)y1y100y)

=4 58n(y)<1 (1) + cs5y&o(1). (5)

Thus, the original system (1) is reduced to Eq. (5). The term (r —
1)y1y16(y) on the right of Eq. (5) describes the impact losses of system,
which can be regarded as an impulsive damping term.

3. Stochastic averaging approach

Under the foregoing assumption that damping, impact losses and
excitation terms are small, the transformed Eq. (5) represents a sys-
tem with a weakly non-linear restoring force, which permits the
rigorous analytical study by stochastic averaging approach.

Letting y = y1, ¥ =¥3, Eq. (5) is equivalent to a pair of first-order
equations:

y1=Y2 (6a)
Vo= - CU(Z)JM —(c¥3 — 1)y — C3Y? — (1 =ry2ly210(y1)
+ c458n(y1)E1(6) + c5y1E2(0). (6b)

Clearly, excitation terms are not associated with y,, which implies
Wong-Zaikai correction terms are zero. Eq. (6) can be converted to
the Itd-type stochastic differential equations as follows:

dy; =y, dt, (7a)

dyy =[-wdy1 — (c¥F — c1)y2 — €3¥3 — (1 = Ny ly218(y1)] dt
+ ¢4 sgn(yq)dWq (t) + c5y1 dW5(1), (7b)

where Wq(t) and W5(t) are unit Wiener processes.

The corresponding total energy function and potential function
are, respectively:

2 2 4
_Ya . ¥ N
H(t)— 7 +0)07 +C3 z, (8)
2
2 Y1 y
Ulyn) =035 +c37- (9)

The derivative of Eq. (8) with respect to t can be obtained as
follows:

=[—(cy% — c1)yv2 — (1 = 1)y2ly216(y1)
+ c458n(y1)E1(8) + csy1 &2(D)]y2. (10)

Then Eq. (10) can be converted to the Ito-type stochastic differ-
ential equation:

dH = [~w3y1 — (¥ — c1)y2 — €3y3 — (1 = 1)y21y218(y1)
2

+3c2+ Tc2y3]de + [caypsgn(yr )] AWy (1)
+ [c5y1y258n(y1)] dW5(8). (11)

As is well know, it is difficult to obtain the exact stationary solution
to the corresponding Fokker-Planck-Kolmogorov (FPK) equation of
Eq. (11) due to the non-linear nature

Since coefficients cq, ¢y, (1-7), c42, c52 are small, y; and y, are
two fast varying random processes, wh11e H(t) is a slowly varying
random process. Therefore, H(t) may be approximated by a Markov
process governed by the mean It6-type stochastic differential equa-
tion:

2

dH = m(H)dt + o(H)dW(t), (12)

where W(t)is a unit Wiener process. M(H) and ¢(H) are the mean drift
coefficient and the mean diffusion coefficient, respectively, which
can be derived by the quasi-conservative averaging procedure [24].
Note that the impulsive damping term should be averaged over a
half-period since there are two impacts in each period.

The mean drift coefficient and the mean diffusion coefficient can
be obtained, respectively:

Him s R Q- D 56Ty 5 R, (13)
P = 1 ARG + alH) (14)
where
TyalH) = 25 = R )

R(H) = %[(5 ~ PR )+ QF - DR

Q(H) = f;g [(3EF — 2E2 — F)F; () + (2% + 2F? — 2EF)F, ()],

P(H) = 3—\/—[(F E)F,() + ER, (D)),

E= w3 +c3A%, F:#, ]:\/g. (15)

The amplitude A is the positive root of the following equation:

UA)=H, thatis A=U"1(H).
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