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The stability of a horizontal layer of fluid heated from below as well as from above is examined. The
temperature gradient between the walls of the fluid layer consists of a steady part and a time-dependent
part, which is oscillatory. The amplitude of temperature modulation is �. By considering the weakly
non-linear analysis, it is shown that the modulation produces a range of stable hexagons near the critical
Rayleigh number. Some comparisons have been made with the other theoretical results.
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1. Introduction

This paper deals with the stability of a fluid layer confined be-
tween two horizontal planes and heated from below and above pe-
riodically with time. Considerable attention has been given to this
stability problem during the last 50 years. Convection in a horizon-
tal layer of fluid is often accompanied by a cellular pattern of mo-
tions [1–3]. Stuart [4] discussed in detail the non-linear mechanics
of hydrodynamic stability. Malkus and Veronis [5] have investigated
the theory, by examining the stability of various solutions of the
non-linear equations corresponding to stationary solutions. Later on
Davis and Segel [6] studied the non-linear stability problem for free
surfaces by considering surface deflection. They found the influence
of the variable fluid properties on the cellular convection.

Davis [7] has suggested that weakly non-linear evolution at
Rayleigh numbers near critical is governed by amplitude equation
of Landau type. Finucane and Kelly [8] performed experiment on
the alteration of the convective heat transport due to temperature
modulation. Employing the shape assumption and free boundary
conditions, they developed a non-linear analysis and estimated the
two-dimensional convection amplitude. Davis et al. [9] have pre-
sented a weakly non-linear convective instability theory for pattern
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selection in single-component systems coupling Benard convection
and solidification.

Schluter et al. [10] in their analysis concluded that in the absence
of modulation, buoyancy driven convection is supercritical and has
the form of two-dimensional rolls when the fluid has constant prop-
erties. But in case of modulation it has been shown by Roppo et
al. [11] that the convection is transcritical and that hexagonal cells
are the preferred stable mode in the neighbourhood of the critical
Rayleigh number. Roppo et al. [11] considered temperature modu-
lation only of the lower wall, using sinusoidal profile.

The object of the present investigation is to study the weakly
non-linear convection by considering the temperature modulation of
both the boundaries. Furthermore, the results have been obtained for
more general temperature profiles. Here we consider a temperature
profile, which is similar to the variation of the atmospheric temper-
ature near the earth's surface during one complete day–night cycle.
The temperature profile has been expressed in Fourier series. The
results have been obtained for the following three cases: (a) when
the plate temperatures are modulated in phase, (b) when the mod-
ulation is out of phase and (c) when only the lower plate tempera-
ture is modulated. The results have been compared with the other
theoretical results. The results have their relevance with convective
flows in the terrestrial atmosphere.

2. Statement of the problem

Consider a viscous, incompressible fluid layer, confined be-
tween two parallel, horizontal stress-free planes, a distance d apart.
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Fig. 1. Benard configuration.
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Fig. 2. Variation of the temperature T with time t.

The system is of infinite extent in the horizontal direction. The planes
considered here are perfect heat conducting boundaries. The config-
uration is shown in Fig. 1.

The non-dimensional governing equations under the Boussinesq
approximations are

1
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= ∇2V − ∇p + R1/2�k̂, (1)

∇ · V = 0, (2)
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where P = v/� is the Prandtl number and R = �g�Td3/�� is the
Rayleigh number, perturbation quantities V = (u, v, w), � and p are,
respectively, the fluid velocity, temperature and pressure fields. T0
is the temperature in the conducting state while t is the time. �
is the coefficient of volume expansion, g is the acceleration due to
gravity, �T is the temperature difference between the walls, � is the
kinematic viscosity, � is the thermal diffusivity, k̂ is the vertical unit
vector.

To modulate the wall temperatures, we consider the temperature
profile as shown in Fig. 2, known as day–night profile. This temper-
ature profile is defined below:
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where � is the modulation frequency and 2�/� is the period of
oscillation. The temperature profile shown in Fig. 2 is similar to the
variation of the earth's surface temperature during two complete
day–night cycles.

The Fourier series of the function (4) is given by
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By shifting the origin we write

T(t) =
∞∑

m=1

am cos m�t +
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m=1

bm sin m�t. (6)

Now we define the externally imposed wall temperatures as
follows:

(i) When the temperature of the lower boundary as well as of the
upper boundary is modulated, we have
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(ii) When the upper boundary is held at fixed constant temperature,
then

T(t) = TR + 	d
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=TR at z = d. (8b)

Here � represents small amplitude, 	 is the thermal gradient, 
 is
phase angle and TR is the reference temperature. The basic temper-
ature gradient �T0/�z, which appears in Eq. (3) is obtained in the
dimensionless form as given below:
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where

f (�m) = �m
sinh �m

[cos �m(1 − z) − ei
 cosh �m(z)]. (9a)

and

�2m = im �∗ and

�∗ = �d2/� (non-dimensional frequency). (9b)

Henceforth, the asterisk will be dropped and � will be considered as
the non-dimensional frequency. Free–free boundary conditions are
being applied in this problem, therefore at z = 0 and 1, we have

w = 0,
�2w
�z2

= 0 (10a)

and also

� = 0. (10b)

Since the boundaries are perfectly heat conducting, the fluctuation
of temperature vanishes there.

The non-linear stability problem for the system (1)–(3) is posed
in terms of a small parameter ∈ , which is a measure of amplitude of
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