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a b s t r a c t

This paper presents three-dimensional (3D) exact fundamental solutions of the thermoelastic field in a

transversely isotropic elastic medium weakened by a half infinite plane crack subjected to a pair of

point thermal loadings symmetrically acting on the crack surface. In view of the symmetric condition,

the original problem is transformed into a mixed boundary value problem of a half space. By means of

the general solutions conjugated with the generalized potential theory method, the problem is exactly

solved and the corresponding Green’s functions are derived, for the first time. Complete and exact

fundamental solutions are expressed in terms of elementary functions. The singular behavior of the

crack tip is discussed and the stress intensity factor is given explicitly.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As an important branch in solid mechanics, the study of
thermoelastic problems has long been prevailing in the literature;
for example, wave propagation [1,2], inclusion [3], contact pro-
blems [4–6], dislocation [7], heat transfer [8], and so on. In
particular, the thermoelastic crack problem subjected to various
types of external thermal loadings has been discussed extensively
in the scientific community [9–17]. Most of the previous analy-
tical works treated the axisymmetric [9–13] or two dimensional
cases [14,15]. In the past crack analyses, integral transform
method [10,12,13] or theory of dual/triple integral equations
[11,16,17] were usually adopted. It is noted that there exist quite
few reports concerning the non-axisymmetric problems within
the framework of thermo-elasticity in literature.

Kellogg [18] pointed that the potential theory method is a tool
for studying problems governed by Laplace equations in several
physic areas. This method is extended by Fabrikant [19,20] who
creatively represented the reciprocal of the distance between two
points in Euclidean space by an integral. Such a representation of
the distance lends to various non-classic 3D elastic solutions for
mixed boundary value problems arising in crack and punch
problems, by using the potential theory along with the general
solutions proposed by Elliott [21] for pure elasticity. The potential
theory was further generalized by Chen and his coauthors for

crack and contact problems in multi-coupling disciplines [22], for
instance, piezo-elasticity [23], thermo-elasticity [24], thermo-
piezo-elasticity [25], magneto-electro-thermo-elasticity [26],
thermo-poro-elasticity [27], to name a few. In particular, the
penny-shaped crack problem in Ref. [27] is axisymmetric, since
the crack is subjected to pairs of identical mechanical, thermal
and pressure loadings which are uniformly distributed on the
upper and lower crack surfaces.

From the mathematical point of view, the structures of
governing equations for crack problems in piezoelasticity and
magnetoelectroelasticity are identical to their counterparts in
pure elasticity [24]. However, this is not so when the thermal
effect is taken into count; certain new features appear, making
some challenges to the potential theory method [24,28]. It is
noted that most works (Refs. [22–27], among others) associated
with crack problems mentioned above were dedicated to penny-
shaped cracks.

Half infinite crack has attracted a lot of attention from
numerous scholars [29–34]. It is interesting to note that potential
theory method was already employed to develop 3D non-axisym-
metric analyses for half infinite plane cracks subjected to external
loadings applied at an arbitrary point on the crack surfaces in
elasticity [33], piezoelectricity [34] and piezo-thermo-elasticity
[35]. However, there is no report yet in academic records, on the
non-axisymmetric analyses within the framework of thermoelas-
ticity for half infinite plane crack.

This paper aims to make exact and complete 3D analyses for
transversely isotropic media containing a half infinite plane crack
subjected to temperature loads symmetrically applied on the
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upper and lower crack surfaces. The original problem is turned
into a mixed boundary value problem in view of the symmetry
inherent to the problem. The transformed problem is solved by
the generalized potential theory method conjugated with the
general solutions. A new potential function is introduced to
consider the thermal effect. The integral and integro-differential
equations involved in the present study are, respectively similar
to the governing equations for punch and crack problems in pure
elasticity. The governing equations are solved by directly employ-
ing the results available in the literature. For a point temperature
load, the corresponding Green’s functions along with their
derivatives of various orders are derived. Exact and complete
fundamental solutions are constructed in terms of elementary
functions, for the first time. The singular behavior of the crack tip is
examined and the stress intensity factor is given explicitly. For an
arbitrary distributed thermal load, the stress intensity factor can
be determined by an integral and an application of the current
fundamental solutions has been presented for a particular plane
strain problem. In the present study, the temperature field is
derived via two different ways and a perfect agreement is
achieved. In view of the merits mentioned above, the present
solution can serve as a benchmark to various simplified analyses
and numerical codes.

2. Steady state general solutions for thermoelasticity

In Cartesian coordinate system Oxyz, the constitutive equation
for transversely isotropic media with the isotropic plane perpen-
dicular to the z-axis is described by the Duhamel–Neumann
relations [12,24]
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where bi and cij are, respectively thermal moduli and elastic
constants with the identity 2c66¼c11�c12 holding; u(v,w) and
sij(si,tij) are the displacement and stress components, respec-
tively; T is the temperature variation with T¼0 corresponding to
the stress-free state.

Substitution of the constitutive relations in Eq. (1) into the
equilibrium equations (sji,j¼0) gives rise to
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indicated quantity.
The temperature field for the medium in a steady-state is

governed by
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where kij is the thermal conductivity coefficient.
The general solutions to Eqs. (2) and (3) proposed by Chen

et al. [24] are
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where cj(j¼0,1,2,3) are quasi-harmonic functions
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zj¼zsj and sj(j¼0,1,2,3) are material eigenvalues; s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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, s1 and s2 are the roots with a positive real part of

the following algebraic equation

a0s4�b0s2þc0 ¼ 0: ð6Þ

It is noted that Eq. (4) is valid only in the case of distinct
material eigenvalues.

Introducing the following complex variables

s1 ¼ sxþsy, s2 ¼ sx�syþ2itxy, tz ¼ txzþ ityz; ð7Þ

one can derive the thermoelastic field in the compact form as
follows
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The constants aij, a0(b0,c0) and gij involved in Eqs. (4), (6) and
(8) are given in Appendix A.

Early researches [22] clearly revealed that the general solu-
tions along with the potential theory method will definitely
facilitate solving the mixed boundary value problems arising in
the crack and contact analyses, especially the non-axisymmetric
problems. Some non-classic 3D fundamental solutions were thus
developed. To show the versatility of the potential theory method,
an infinite body weakened by a half-infinite plane crack is
considered in the next section.

3. Generalized potential method for half-infinite plane crack

Consider an infinite transversely isotropic thermoelastic body
containing a half-infinite plane crack whose surface is parallel to
the plane of isotropy (see Fig. 1). The coordinate system is
established such that the xoy plane is coincident with the crack
surface, and the origin O locates at the edge of the crack. Two
symbols S and S are introduced to denote the regions on the plane
z¼0(denoted by I), respectively occupied by the crack and its
complement and S�{(x,y)90ryoN, �NoxoN}, S [ S¼ I and
S \ S¼ |, implying no intersection and separation. A pair of
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Fig. 1. Horizontal (a) and vertical (b) cross sections of a half infinite crack.
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