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a b s t r a c t

In this paper the nonlocal shell and beam theories are used to study the transverse vibration of slender

NTs. The agreement between the shell model and molecular dynamics simulations shows that the

nonlocal effect originates predominantly from the atom-atom interaction in circumferential direction.

It thus does not decrease with rising axial wavelength. In this case, a nearly constant nonlocal

coefficient e0 can be achieved for vibrating NTs. These behaviors however cannot be captured by the

widely used nonlocal beam theory where only the axial nonlocal effect is included. Thus, caution must

be taken when the one-dimensional nonlocal model is applied to slender NTs.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In 2003 nonlocal elasticity [1,2] was incorporated into con-
tinuum mechanics theory to capture the unique features of
cylindrical nanotubes (NTs) [3,4]. The nonlocal beam [3–12] and
shell [13–19] models were developed by using the gradient
theory based on a special kernel function. Unique bending,
vibration, wave propagation and buckling responses were
achieved for carbon nanotubes (CNTs) [3–11,13–15,17–20] and
microtubules (MTs) [12,16] showing significant difference
between NTs and their macroscopic counterparts. It is now widely
accepted that the nonlocal continuum models considering the
new physics emerging at the nanoscale can play an important role
in characterizing the mechanical responses of NTs, such as CNTs,
zinc oxide NTs (ZONTs) [21], boron nitride NTs (BNNTs) [22] and
their biological counterparts MTs. These NTs are fundamental
building blocks in a nanoscale world.

In an effort to develop the nonlocal theory, researchers
[6,8,13,15,17,18,20] have fitted the nonlocal continuum models
based on the gradient theory to molecular dynamics simulations
(MDS). The objective is to extract the value of nonlocal coefficient
e0 assumed to be appropriate for each material, i.e., a material
constant. The obtained values of e0 for CNTs however depend
significantly on the boundary conditions, the geometric size
and the mechanics problems discussed [6,8,13,15,20]. Also while
the gradient models with selected e0 matched some MDS

[6,13,15,17,18], they led to significant errors in other mechanics
problems of NTs [20]. Moreover, it is noted in the literature that
the transverse vibration of NTs has been studied extensively
based on the nonlocal beam theories [5,8–11]. This one dimen-
sional model however only considers the nonlocal effect in axial
direction. The effect in circumferential direction was tacitly
ignored. Therefore, as will be shown later, for slender NTs
significant discrepancy can be found between the nonlocal beam
model and the nonlocal shell model where the nonlocal effect in
both circumferential and axial directions is considered. These
observations indeed have raised some fundamental issues in the
nonlocal mechanics theory.

This paper aims to examine these fundamental issues in the
nonlocal mechanics theory when it is applied to study the
transverse vibration of NTs. In doing this, the nonlocal shell model
[11–14] accounting for both axial and circumferential nonlocal
effect is employed and compared with the nonlocal beam model
[8–11] and existing MDS [8]. In Section 2 the nonlocal shell and
beam models are presented and the method of vibration analysis
is introduced briefly. Then, in Section 3 the nonlocal shell and
beam models are compared with each other and also with MDS
for the first four modes of transverse vibration. The discussions
about aforementioned issues are given afterwards. The conclu-
sions are drawn in Section 4.

2. Methodology

In nonlocal elasticity, the stress at one reference point is a
function of strain at all points inside the domain [1,2]. This is in
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accordance with the atomic theory of lattice dynamics and
experimental observations on phonon dispersion. For single-atom
layer NTs, e.g., CNTs, ZONTs and BNNTs, such a theory reflects the
prominent effect of the atom-atom interactions between a refer-
ence point and all other atoms in the nanostructures. The
corresponding constitutive equations read

sij ¼

Z
að9w�w09,tÞCijkleij dVðw0Þ 8wAV , ð1Þ

Here sij is the stress tensors at reference point w, Cijkl is elastic
modulus tensor and eij is the strain tensor at point w0. a(9w�w09,t)
is the nonlocal kernel function which measures the nonlocal
effects at the reference point. 9w�w

0

9 is the Euclidean distance.
In a(9w�w09,t), t¼e0a/l where e0 is assumed to be a constant
appropriate to each material, a is an internal characteristic length
(e.g., the length of the C–C bond, lattice parameter, granular
distance), and l is an external characteristic length (e.g., crack
length, wavelength). Selecting a special class of physically admis-
sible kernel for a one can reduce the integral–partial differential
equations of linear nonlocal elasticity (i.e., Eq. (1)) to a singular
partial differential equation [2]

ð1�ðe0aÞ2r2
Þsij ¼ sij ð2Þ

where sij¼Cijkleij is classical stress tensor. For two dimensional
shell model the Laplace operator isr2

¼(@2/@x2)þ(@2/r2@y2) where
x is the axial coordinate, y is circumferential angular coordinate
and r is the radius of NTs. When one dimensional beam model
is used the Laplace operator reduces to @2/@x2. Replacing the
classical constitutive equations with the gradient theory (Eq. (2))
obtained based on the selected form of a in Timoshenko beam
and Flugge thin shell theories leads to the nonlocal beam and
shell models for NTs.

The dynamic equations for NTs as nonlocal Timoshenko beams
were derived in Refs. [8–11].
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Here wb and f are transverse displacement and rotation angle;
t is time; E and G are Young’s modulus and shear modulus; A and
I are the area of cross-section and the second moment of area; r is
mass density and Ks denotes the shear correction coefficient.
A singular equation in terms of wb can be obtained based on
Eq. (3). The general solution to this singular equation takes the
form [8–10].

wb ¼ ½C1 coshðbxÞþC2 sinhðbxÞþC3 cosðdxÞþC4 sinðdxÞ�e�iot ð4Þ

Here o is angular frequency (frequency f¼o/2p); b and d are
the functions of E, G, A, I, Ks; C1 to C4 are some real numbers and
i¼

ffiffiffiffiffiffiffi
�1
p

. In addition, f can be expressed in terms of wb. For
clamped NTs of length L we have wb¼0 and f(wb)¼0 at x¼0 and
L. Substituting Eq.(4) into the boundary conditions yields
M1[C1,C2,C3,C4]T

¼0. Here M1 is the coefficient matrix. The condi-
tion for nonzero solution of C1 to C4 is detM1 ¼ 0, which gives the
vibration frequency of NTs. For more details on the method the
reader may refer to Refs. [8–11].

The nonlocal shell equations for NT vibration were obtained in
Refs. [13–15]
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Here u, v and w are longitudinal, circumferential and radial
displacements of NTs, D is effective bending stiffness; K is
in-plane stiffness; rh is mass density per unit lateral area on
the surface of NTs. The solutions satisfying the clamped end
condition are as follows [23]
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where U, V and W denote the longitudinal, circumferential and
radial displacement amplitudes; n is circumferential wave number
and mL/r�c¼1.506p, 2.5p, 3.5p, 4.5p, 5.5p and 6.5p corresponding
to half axial wave number m¼1 2, 3, 4, 5, 6y Thus we have
mL/r�cE(mþ0.5)p. Substituting Eq. (6) into (5) leads to the
equations M2[U,V,W]T

¼0, where M2 is a coefficient matrix. For
the nonzero solutions of U, V and W we have detM2 ¼ 0. The
frequency can then be obtained by solving the equation.

In Flugge [24] and Timoshenko’s books [25] it was shown that
when circumferential wave number n is equal to one, the thin
shell model is in perfect match with the Euler beam model in the
buckling analysis of a long cylindrical thin shell. As explained by
Flugge [24], in this particular case (i.e., n¼1 and a sufficiently
large length-to-aspect ratio), the thin shell model predicts a
circular cross-section for a deformed cylindrical shell, which is
exactly the same as assumed in the beam model. Recently, this
conclusion has been further confirmed for the axial buckling [26]
and transverse (or beam-like) vibration [26–29] of CNTs at the
nanoscale. This reveals the fact that at a large axial wavelength
the lowest frequency with n¼1 given by the shell model corre-
sponds to the transverse or beam-like vibration of NTs.

3. Results and discussions

In this Section the transverse vibration of NTs will be studied
based on the classical (i.e., e0¼0) and nonlocal Timoshenko beam
[8–11] and Flugge shell models with n¼1 [14,15]. Single-walled
carbon nanotubes (SWCNTs) having chirality (5, 5) with clamped
ends are selected as a typical example of NTs (Fig. 1). The effective
values of material properties used for SWCNTs as two dimensional
shells are D¼2 eV, K¼360 J/m2 and rh¼(2.27 g/cm3)�0.34 nm
[28,29]. These values correspond to the effective thickness
h¼0.1 nm and equivalent Young’s modulus E¼3.5TPa [29,30] which
are used here for SWCNTs as Timoshenko beams.
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