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Received 27 July 2006; received in revised form 1 March 2007; accepted 2 March 2007

Abstract

The effects of the side walls on the flow in ducts with suction and injection are examined. Three illustrative examples are given. The first
example considers the effect of the side walls on the flow over a porous plate. The second example considers the flow between two parallel
porous plates and the third example is devoted to the investigation of the flow in a rectangular duct with two porous walls. Exact solution
of the governing equation using the no-slip boundary condition and an additional condition are obtained. The expression of the velocity, the
volume flux and the vorticity are given. It is found that for large values of the cross-Reynolds number near the suction region the flow for a
Newtonian fluid does not satisfy the boundary condition, but it does not behave in the same way for a second grade fluid. Three examples
considered show that there are pronounced effects of the side walls on the flows of a second grade fluid in ducts with suction and injection.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, some exact solutions of the governing equa-
tion of a fluid of second grade are given. Obtaining the exact
solutions of the governing equation of a fluid of second grade is
very important for many reasons. They provide a standard for
checking the accuracies of many approximate methods such as
numerical or empirical. Although computer techniques make
the complete integration of the governing equation of the fluid
of second grade feasible, the accuracy of the results can be
established by a comparison with an exact solution. Exact
solutions given in this paper are for flows over porous bound-
aries. The aim of this paper is to investigate the effects of
the side walls on the flows over porous plates. In order to
show the effects three illustrative examples are given. The first
example considers the effects of the side walls on the flow over
a porous plate. The second example considers the flow between
two parallel walls with uniform injection at one plate and uni-
form suction at the other. The third example considers the flow
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in a rectangular duct with impermeable lateral boundaries and
the upper and lower boundaries with uniform injection and
uniform suction. In order to show the effects of the side walls
on the flow of the velocity, the volume flux across a plane
normal to the flow and the vorticity are calculated. These three
examples show that there are pronounced effects of the side
walls on the flow in ducts with suction and injection.

The flow over a porous plane boundary at which there is
a uniform suction velocity has been investigated by Griffith
and Meredith [1] and they found an exact solution of the
Navier–Stokes equations. It can be shown that here is no solu-
tion of the Navier–Stokes equation for the flow over a porous
plane boundary at which there is a uniform injection velocity.
However, if the porous plate is bounded by two side walls, a
solution of the Navier–Stokes equations can be obtained for in-
jection case [2]. An extension of the flow for a Newtonian fluid
past a porous plate to the flow of a non-Newtonian fluid has
been given by many authors [3–6]. In this paper, it is shown
that the velocity for a second grade fluid is greater than that of
the Newtonian fluid in the absence of the side walls.

It is assumed that a porous plate is bounded by two side walls
and the flow over the porous plate is generated by the velocity
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of the porous plate in the absence of the pressure gradient. The
solution of the governing equation has three coefficients. The
no-slip condition and the condition at infinity determine two of
them. In order to determine the third, an additional condition
is used. The velocity distribution depends on the ratio of the
suction velocity to the plate velocity, the Reynolds number
defined by the distance between two side walls and the velocity
of the porous plate.

The second illustrative example is the flow between two par-
allel porous plates with uniform injection at the upper plate and
uniform suction at the lower plate. The results for suction at the
upper plate and injection at the lower plate can be found without
further calculations. When the suction velocity goes to zero, the
solution tends to that for the two-dimensional Poiseuille flow.
The governing equation is a third order differential equation.
The no-slip condition at boundary does not sufficient to deter-
mine the solution, therefore, one needs an additional condition.
A critical review on the boundary conditions, the existence and
uniqueness of the solution has been given by Rajagopal [7].
For large values of the cross-Reynolds number, defined by the
suction velocity, the solution for a second grade fluid shows
that the velocity vanishes at the upper and lower plates, but the
velocity for a Newtonian fluid does not vanish at the suction
region near the boundary. The vorticity for a Newtonian fluid
is concentrated near the lower plate and it has a constant value
across the channel, but it does not behave in the same way for
a fluid of second grade.

The third example is the flow in a rectangular duct with
uniform suction and injection. This flow for a Newtonian fluid
has been examined by Mehta and Jain [8], and Sai and Rao
[9] and in [2]. There are some similarities between the flow
in a rectangular duct with porous walls and in a circular pipe
with porous wall [10]. In this paper, an extension of the flow
for a Newtonian fluid in a rectangular duct with porous walls
to the flow of a fluid of second grade is considered. Since for
a second grade fluid the governing equation in a third order
differential equation, to determine the solution one needs an
additional condition. It is found that the flow for large values of
the cross-Reynolds number, near the suction region, does not
satisfy the boundary condition for a Newtonian fluid but it does
not behave in the same way for a second grade fluid. The effect
of the side walls is greatest for a duct with square cross-section
for which the aspect ratio is equal to 1 and when this ratio goes
to zero the effect of the side walls disappears. The volume flux
across a plane normal to the flow in a rectangular duct with
suction and injection for a given value of the cross-Reynolds
number decreases approximately linearly with the aspect ratio
and for a given value of the aspect ratio decreases with the
cross-Reynolds number. For large values of the cross-Reynolds
number, the variation of the vorticity for a Newtonian fluid is
concentrated near the region of suction and in the other region
the vorticity has a constant value, but it does not behave in the
same way for a second grade fluid. It is clearly understood from
the discussion that the effect of the side walls is very important
in practice [11,12]. For practical purposes one wishes to know,
for example, how the stress exerted on the bottom wall varies
with the distance between the side walls for a given value of

the aspect ratio of the channel and if this ratio is large or small,
depending on the definition, the stress is nearly uniform and
measured value would be unaffected by the presence of the side
walls.

2. Basic equations

The equation of motion for a fluid in the absence of body
forces is

�
Du
Dt

= ∇ · �, (1)

where � is the density of the fluid, u is the velocity, � is the
stress tensor and D/Dt represents the material derivative. The
continuity equation is

∇ · u = 0. (2)

Eqs. (1) and (2) can be applied to all types of fluids, Newtonian
and non-Newtonian. The stress depends on the local proper-
ties of the fluid. The relation between the stress and the local
properties which is called the constitutive equation is in the
following form for a incompressible second grade fluid [13]

� = −pI + �A1 + �1A2 + �2A2
1, (3)

where �, �1 and �2 are material moduli, An represents the
Rivlin–Ericksen tensor defined as

A0 = I, A1 = ∇u + (∇u)T,

An+1 =
(

�

�t
+ u · ∇

)
An + (∇u) · An + [(∇u) · An]T,

where t is time, p is pressure and I is the identity tensor.
The Clausius–Duhem inequality and the condition that the
Helmholtz free-energy is minimum in equilibrium provide the
following restrictions [13–17]

��0, �1 + �2 = 0, �1 �0.

The flow of an incompressible fluid of second grade over a
porous boundary is considered. The velocity field is assumed
to be in the following form:

u = u(y, z), v = −V, w = 0, (4)

where u, v, w are components of the velocity in rectangular
Cartesian coordinates. The x-axis is taken along the plate, the
y-axis and the z-axis are perpendicular to the x-axis. Inserting
the velocity given by Eq. (4) into the expression of the stress,
the components of the stress can be written in the following
form:

�xx = −p + �2

[(
�u

�y

)2

+
(

�u

�z

)2
]

,

�xy = �
�u

�y
− �1V

�2u

�y2 ,

�yy = −p + (2�1 + �2)

(
�u

�y

)2

,
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