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a b s t r a c t

In this contribution, effective elastic moduli are obtained by means of the asymptotic homogenization

method (AHM), for oblique two-phase fibrous periodic composites with two models (spring and

interphase) of imperfect contact conditions. This work is an extension of previous reported results,

where only perfect contact for elastic or piezoelectric composites for square and hexagonal arrays were

considered. The constituents of the composites exhibit transversely isotropic properties. A doubly

periodic parallelogram array of cylindrical inclusions under longitudinal shear is considered. The behavior

of the shear elastic coefficient for different geometry arrays related to the angle of the cell is studied. As

validation of the present method, some numerical examples and comparisons with theoretical and

experimental results verified that the present model is efficient for the analysis of composites with

presence of imperfect interface and parallelogram cell. The effect of the arrangement of the cells on the

shear effective property is observed. The present method can provide benchmark results for other

numerical and approximate methods.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The transport properties of circular cylinders packed in regular
arrays are of considerable interest in a number of fields. The
transport property may be the electrical or thermal conductivities,
the dielectric permittivity, or the elastic shear modulus in antiplane
elasticity. The result is of interest in the field of materials physics
where two phase materials containing rod- or fiber-like inclusions
often occur. Knowledge of their electrical or thermal conductivities
and their elastic properties is valuable. Calculations on ordered
arrays of cylinders are therefore directly relevant to practical
situations. The problem of calculating the transport properties
will be discussed here in the context of stiffness elastic properties.
However, the mathematics and the results obtained are immedi-
ately applicable to other associated situations.

In most composites, the fiber–matrix adhesion is imperfect; the
continuity conditions for stresses and displacements are not satisfied.
Thus various approaches have been used, in which the bond between
the reinforcement and the matrix is modeled by an interphase with

specified thickness, by Hashin [1], Guinovart-Diaz et al. [2]. Other
assumptions suppose that the contrast or jump of the displacements in
the interface is proportional to the corresponding component of the
tension in the interface in terms of a parameter given by the constant of
a spring. This type of imperfect contact (spring type) in the interphases
of the composites was investigated by Benveniste and Miloh [3] among
others and has been used later, for instance, by Achenbach and Zhu [4]
and Hashin [5–7].

Molkov and Pobedria [8] reported the elastic effective coefficients
for two-phase fibrous composite with rhombic array of periodic cells
under perfect contact conditions. Recently, Abolfathi [9] applied a
numerical algorithm to determine the homogenized elastic properties
of bidirectional fibrous composites and Jiang et al. [10] analyzed
different situations of parallelogram composite. In this work, micro-
mechanical analysis method is applied to a periodic composite with
unidirectional fibers and parallelogram cells, in particular, rhombic
periodic cells. The analytical expressions of the homogenized elastic
properties are calculated for two phase composite with imperfect
contact conditions. Two approaches (spring and three phase models)
are used for the calculation of the shear elastic effective coefficients of
angular fibrous composites with anisotropic elastic constituents with
no well bonded contact. This contribution is an extension of previous
works of Rodriguez-Ramos et al. [11] and Guinovart-Diaz et al. [12]
using the asymptotic homogenization method (AHM). The results in
this paper are mainly focused on the impact of the fibers cross angles
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and the mechanical imperfection of the interface on the stiffness
properties of the chosen composites.

2. General considerations. Contact at the interfaces

Let us consider unidirectional periodic fibers composite with
crossing angle y embedded in a matrix as shown in Fig. 1. The crossing
angle of the fibers is assumed to remain constant so that a parallelo-
gram cell with periods w1, w2 can be defined. The periodicity of
microstructure determines the geometry of the periodic cell S. Thus, a
two-phase periodic composite is considered here which consists of a
parallelogram array of identical parallel circular cylinders embedded in
a homogeneous medium (Fig. 2). As a unidirectional fibrous composite
it is assumed that the microstructure of the composite along the third
direction (perpendicular to plane of cross-section) remains constant.
The fibers are all assumed straight and of circular cross sections with
radius R. The material properties of each phase belong to the crystal
symmetry class 6 mm, where the axes of material and geometric
symmetry are parallel. The composite is not well bonded at the contact
between the matrix and the fiber. Therefore, imperfect contact
conditions at the interface G are considered.

The governing elastic equations for this kind of materials are the
Navier equations of linear elasticity. As the body forces are absent,
stress (r), strain (e), and displacement (u¼(u1, u2, u3)) fields satisfy
the following three equations, respectively:

Stress�strain relations: r¼ C:e: ð1Þ

Displacement-strain relations : e¼
1

2
ðruþrTuÞ: ð2Þ

Equilibrium equations : rUr¼ 0, ð3Þ

where C is the elasticity tensor and r is the gradient operator,
comma notation is understood to denote differentiation with
respect to xi.

Since most reinforcements may not be perfectly bonded to their
surrounding matrix, the perfect bonding condition is often inade-
quate in describing the physical and mechanical behavior of real
composite materials. An imperfect bond may be introduced delib-
erately by coating the reinforcements to control the properties of the
composites and sometimes to improve their fatigue life [1]. More-
over, chemical reactions between reinforcements and the matrix in
manufacturing process or the damage caused by cyclic loadings of
the composites can develop imperfect bonding interfaces. To model
the imperfect bonding at the interfaces, some idealized interfacial
conditions have been proposed by various investigators. For exam-
ple, Gharemani [13], Mura and Furuhashi [14], Mura et al. [15], and
Jasiuk et al. [16], among others have used the pure frictionless sliding
condition to model grain boundary sliding in polycrystalline mate-
rials and particle sliding in soil. Furthermore, the frictional sliding
considered by numerous researchers; see, for example, Hashin [1,5],
Jasiuk et al. [17], Huang et al. [18], Gao [19], and Zhong and Meguid
[20] is a more realistic interfacial condition, in which the frictional
resistance of the interface is accommodated by assuming that the
discontinuous components of displacement are proportional to the
associated tractions

:sij:nj ¼ 0,

:ul:ðdil�ninlÞ ¼ ð1=KÞTi, on G
:ul:ninl ¼ ð1=MÞNi ð4Þ

where Ti¼sijnj�slmnlnmni and Ni¼slmnlnmni are the shear and
normal components of the surface traction, respectively. G denotes
the interface between the fibers and matrix, whereas K and M are
values of sliding and debonding parameters. As these parameters
become infinite, the perfect bonding condition is recovered, while
pure sliding condition occurs when K is zero and M approaches
infinity. Since these parameters are related to the macroscopic
behavior of composites, the theory suggests that they can be
determined by a set of carefully designed experiments.

Since a binary periodic composite is studied, thus, two distinct
phases, occupying S1 and S2 (Fig. 2) are assumed to be in non-
perfect contact along the interface G of each cylinder. In order to
model various possible damages occurring on the fiber-matrix
interface composite two formulations of imperfect bonded are
considered as follows:

(i) Linear spring interface (LSI) model. A generalized shear lag model
[1,5] that can be termed as the mechanically compliant weakly
conducting interface is useful for the analysis of the behavior of
composites. The imperfect interface proposed is the shear lag
model (or the spring layer model): tractions are continuous but
displacements are discontinuous across the imperfect inter-
face. The jumps in displacement components are further
assumed to be proportional, in terms of the ‘‘spring-factor-
type’’ interface parameter, to their respective interface traction
components

sðaÞt ¼
_
K utj jj j, s2

ð1Þ
Un
-ð1Þ
¼ s2

ð2Þ
U n
!ð2Þ

, uð1Þn ¼ uð2Þn , on G ð5Þ

where the subscripts t and n means tangential and normal
directions respectively.

_
K is the proportional interface para-

meter. The double bar notation is used to denote the jump of
the relevant function across the interphase G taken from the
matrix (1) to the fiber (2) i.e. :f:¼ f1�f2. Eq. (5) is usually called
a weak interface condition. It has been originally proposed by
Goland and Reissner [21], later studied by many authors like
Benveniste and Miloh [3], Molkov and Pobedria [22], Mahiou
and Beakou [23], and Andrianov et al. [24].

(ii) Interphase contact (IC) model. The imperfect interface condition
is replaced by the explicit three-phase problem of two

Fig. 1. The cross-section of a rhombic array of angle y and periods w1, w2 of circular

fibers.

Fig. 2. The unit cell showing the domains S1 and S2 occupied by the matrix and fibers

materials; G is the common interface.
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