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a b s t r a c t

Free vibration of laminated composite plates using two variable refined plate theory is presented in this

paper. The theory accounts for parabolic distribution of the transverse shear strains through the plate

thickness, and satisfies the zero traction boundary conditions on the surfaces of the plate without using

shear correction factors. Equations of motion are derived from the Hamilton’s principle. The Navier

technique is employed to obtain the closed-form solutions of antisymmetric cross-ply and angle-ply

laminates. Numerical results obtained using present theory are compared with three-dimensional

elasticity solutions and those computed using the first-order and the other higher-order theories. It can

be concluded that the proposed theory is not only accurate but also efficient in predicting the natural

frequencies of laminated composite plates.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Laminated composite plates are widely used in the aerospace,
automotive, marine and other structural applications because of
advantageous features such as high ratio of stiffness and strength to
weight and low maintenance cost. In company with the increase in
the application of laminates in engineering structures, a variety of
laminated theories have been developed. The classical laminated
plate theory (CLPT), which neglects the transverse normal and shear
stresses, provides reasonable results for thin laminates. However, it
underpredicts deflections and overpredicts frequencies as well as
buckling loads with moderately thick laminates [1]. In order to
overcome the limitations of CLPT, the shear deformation theories
accounted for the effect of transverse shear deformation have been
recommended. The first-order shear deformation theory (FSDT)
assumes linear variation of in-plane displacements through the
thickness. Many studies of the free vibration of laminates have been
carried out using FSDT [2–4]. Since FSDT violates equilibrium
conditions at the top and bottom faces of the plate, shear correction
factors are required to correct the unrealistic variation of the shear
strain/stress through the thickness. The value of shear correction
factor depends not only on the lamination and geometric para-
meters, but also on the loading and boundary conditions. To avoid
the use of shear correction factors, the higher-order shear deforma-
tion theories (HSDT) based on power series expansion of displace-

ments with respect to the thickness coordinate have been
developed. The HSDT has been widely used to investigate the free
vibration of laminated plates [5–10]. A review of various shear
deformation theories for the analysis of laminated composite plates
is available in Refs. [11–13]. Recently, a two variable refined plate
theory (RPT) was first developed for isotropic plates by Shimpi [14],
and was extended to orthotropic plates by Shimpi and Patel [15,16]
and Kim et al. [17]. The most interesting feature of this theory is that
it does not require shear correction factor, and has strong similarities
with the CLPT in some aspects such as governing equation, boundary
conditions and moment expressions. Kim et al. [18] has developed
this theory for the laminated composite plates. The accuracy of this
theory has been demonstrated for static bending and buckling
analyses of laminates by Kim et al. [18], therefore, it seems to be
important to extend this theory to the free vibration analysis of
laminates.

The purpose of this paper is to extend the RPT developed by
Kim et al. [18] to the free vibration of laminated composite plates.
Equations of motion are derived from the Hamilton’s principle.
The closed-form solutions for simply supported antisymmetric
cross-ply and angle-ply laminates are obtained using Navier
solution. The effects of parameters such as the aspect ratio,
thickness ratio, modulus ratio and number of layers on the natural
frequencies of the laminates are investigated. Numerical exam-
ples are presented to illustrate the accuracy and efficiency of the
present theory in predicting the natural frequencies of laminates
by comparing the predictions with those computed using various
theories and the exact solutions of three-dimensional elasticity
theory.
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2. RPT for laminated composite plates

2.1. Basic assumptions

Consider a rectangular plate of total thickness h composed of n

orthotropic layers with the coordinate system as shown in Fig. 1.
Assumptions of the RPT are as follows:

(1) The displacements are small in comparison with the plate
thickness and, therefore, strains involved are infinitesimal.

(2) The transverse displacement W includes three components of
extension wa, bending wb, and shear ws. Both these compo-
nents are functions of coordinates x, y, and time t only.

Wðx; y; z; tÞ ¼waðx; y; tÞþwbðx; y; tÞþwsðx; y; tÞ ð1Þ

(3) The transverse normal stress sz is negligible in comparison
with in-plane stresses sx and sy.

(4) The displacements u in x-direction and n in y-direction consist
of extension, bending, and shear components:

U ¼ uþubþus and V ¼ vþvbþvs ð2Þ

� The bending components ub and vb are assumed to be
similar, respectively, to the displacements given by the
classical plate theory. Therefore, the expression for ub and
vb can be given as

ub ¼�z
@wb

@x
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@wb
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ð3Þ

� The shear components us and vs give rise, in conjunction
with ws, to the parabolic variations of shear strains gxz, gyz

and hence to shear stresses sxz, syz through the thickness of
the plate in such a way that shear stresses sxz, syz are zero
at the top and bottom faces of the plate. Consequently, the
expression for us and vs can be given as
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2.2. Kinematics

Based on the assumptions made in the preceding section, the
displacement field can be obtained using Eqs. (1)–(4) as
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Wðx; y; z; tÞ ¼waðx; y; tÞþwbðx; y; tÞþwsðx; y; tÞ ð5Þ

The extension component wa(x,y,t) of transverse displacement
is negligibly small in most cases. It can be neglected for a simpler
version of the present theory, and then the displacement field
may be expressed as

Uðx; y; z; tÞ ¼ uðx; y; tÞ�z
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Wðx; y; z; tÞ ¼wbðx; y; tÞþwsðx; y; tÞ ð6Þ

The above-mentioned two displacement models are referred
as RPT1 and RPT2 for the simpler and full versions, respectively, in
all figures and tables. The strains associated with the displace-
ments in Eq. (5) are
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2.3. Constitutive equations

Under the assumption that each layer possesses a plane of
elastic symmetry parallel to the x-y plane, the constitutive
equations for a layer can be written as
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where Qij are the plane stress-reduced stiffnesses defined in
terms of the engineering constants in the material axes of the
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Fig. 1. Coordinate system and layer numbering used for a typical laminated plate.
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