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a b s t r a c t

Dislocation interactions with distributed condensed vacancy clusters in fcc metals were
simulated via a concurrent atomistic–continuum method. Due to void strengthening, the
dislocation lines are found to bow as a result of pinning on the original glide plane and
undergo depinning through drawing out screw dipoles and forming prismatic loops on
the secondary slip plane. We discovered an inertia-induced transition between Hirsch
looping and void shearing mechanisms as the void spacing ranges from the scale of nm
to hundreds of nm. Contrary to prior understanding, simulations suggest that large voids
(�5 nm in diameter) can behave as weak barriers to dislocation motions under high
strain-rate dynamic conditions.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Materials subjected to irradiation exhibit elevated yield strength and suffer from intrinsic softening and reduced ductility
by virtue of localization of dislocation plasticity. Irradiation-induced defects act as obstacles to dislocation migration. Typical
radiation-induced defects in fcc lattices include voids (Averback et al., 1977; Kluth et al., 2005; Kondo et al., 2008,
Crocombette and Proville, 2011) and helium bubbles (Donnelly et al., 1983; Henriksson et al., 2005; Demkowicz et al.,
2010; David et al., 2011), particularly for fusion applications (Zinkle, 2005). Transmission electron microscopy (TEM) studies
indicate that these defects act as obstacles to dislocations and, when bypassed, lead to localization of deformation in regions
where defect densities are reduced via dislocation interaction (Shilo and Zolotoabko, 2003, 2007; Shingo et al., 2007; Wu
et al., 2007). Unfortunately, in situ observations of dislocation–obstacle interactions are quite limited owing to elaborate
sample preparation, and restricted spatial and temporal ranges of TEM.

Static analysis of void strengthening suggests that voids with diameter of �2 nm or larger generally act as ‘strong
obstacles’, whereas voids with diameter less than �2 nm act as ‘weak obstacles’, respectively (Hull and Bacon, 2001). It
was concluded that the stress required for dislocation depinning from these voids approaches the theoretical Orowan stress
(Hull and Bacon, 2001; Hirth and Lothe, 1982; Shim et al., 2007). For predicting the in-service performance of metals in
fusion energy facilities, however, understanding of the influence of dynamic deformation on void strengthening mechanisms
is crucial and requires atomistic insight of unit processes of dislocation–void interactions. In the past ten years, molecular
dynamics (MD) has been used extensively to investigate dislocation–obstacle interactions in irradiated metals (Wu et al.,
2007; Shim et al., 2007; Harry and Bacon, 2002; Osetsky and Bacon, 2003; Bacon and Osetsky, 2005; Bacon et al., 2006;
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Terentyev et al., 2007; Cheng et al., 2010). Major limitations arise in using MD to simulate large systems, for example
systems with dislocation line lengths on the order of microns and void spacing on the order of hundreds of nanometers. Con-
tinuum simulation tools such as dislocation dynamics (DD) (Amodeo and Ghoniem, 1990a, 1990b; Kubin and Canova, 1992;
Van der Giessen and Needleman, 1995; Zbib et al., 1998; Bulatov et al., 1998; Cai and Bulatov, 2004) provide approximate
description of dislocations at these larger scales, based on elastic theory of lattice dislocations. However, DD typically suffers
from the approximate nature of prescribed short-range interaction rules between mobile dislocations and obstacles, lacks
the ability to model dislocation dissociation, and requires approximations for dislocation cross slip and other important local
mechanisms.

Pioneering MD simulations of vibrating dislocations were conducted but limited to 2D Frenkel–Kontorowa models
(Weiner et al., 1976). Those models neglected phonon drag effects. Recently, Gumbsch and co-workers (Cheng et al.,
2010, Bitzek and Gumbsch, 2004, 2005 ) investigated dislocation depinning through MD simulations considering
dynamic/inertial effects. Their results suggest that dynamic inertial effects significantly lower the depinning stress. It was
suggested that such inertial effects should not be ignored in computational models at higher scales. However, continuum
models, such as DD, typically assume overdamped dislocation migration via a constitutive force–velocity relationship.

Due to the spatio-temporal complexity of dislocation dynamics, various multiscale modeling methods (McDowell, 2010)
including sequential (Amodeo and Ghoniem, 1990a, 1990b; Kubin and Canova, 1992; Van der Giessen and Needleman, 1995;
Zbib et al., 1998; Bulatov et al., 1998; Cai and Bulatov, 2004; Shehadeh et al., 2006; Hu et al., 2007) and concurrent (Tadmor
et al., 1996; Zhou and McDowell, 2002; Fago et al., 2004; Shilkrot et al., 2002a, 2002b; Zamora et al., 2012) approaches have
been developed to describe dislocation physics. In sequential, hierarchical multiscale modeling approaches, it is intended
that the characteristics and understanding of dislocation–obstacle interactions obtained from MD are incorporated in higher
length scale continuum DD or crystal plasticity simulations. These parameters include maximum obstacle force, critical cusp
angle, and Peierls stress. Although particular long range dislocation–obstacle interactions can be represented within
continuum treatments, it is difficult if not impossible to address complex short range interactions and processes (e.g., core
interactions). Concurrent approaches such as the Quaiscontinuum method (QC) (Tadmor et al., 1996; Fago et al., 2004) or
Coupled Atomistics Discrete Dislocation (CADD) (Shilkrot et al., 2002a, 2002bb; Zamora et al., 2012) seek to address the cru-
cial question of how to reconcile a consistent treatment of dislocations that pass between atomic and continuum regions;
heuristic numerical techniques and/or rules are invoked for passing dislocations across interfaces between atomistic and
continuum domains or through coarse-grained continuum domains with adaptive mesh refinement. As a consequence of
these specialized treatments, existing concurrent approaches are only suitable for 2D quasistatic simulations of dislocations.
For 3D dynamic dislocation–obstacle interactions, the recently developed concurrent atomistic–continuum (CAC) method
(Xiong et al., 2011, 2012a, 2012b) is suitable as a formal coarse-graining of MD and is pursued in this work.

2. Methodology

Fundamental to the CAC method is a unified formulation of atomistic and continuum representation of balance laws
(Chen and Lee, 2005; Chen, 2006, 2009). The CAC formulation generalizes Kirkwood’s statistical mechanical theory of trans-
port processes (Kirkwood, 1946; Irving and Kirkwood, 1950) to facilitate a two-level structural description of materials. It
describes the structure of a crystalline material in terms of continuously-distributed lattice cells, but with a group of discrete
atoms situated in each lattice cell at sub-structural level. A complete field representation of balance laws of atomistic sys-
tems is then derived. Under elastic distortion, the new balance equations fully reproduce the phonon dispersion relations
(Xiong et al., 2014b). Consequently, the formulation reflects all possible dynamics on length and time scales from the atomic
to the macroscopic, and admits coarse-graining in the context of a finite element formulation in which large numbers of
atoms are contained within each element, with defects (e.g., dislocations or cracks) propagating along discontinuous element
interfaces. This avoids anomalous effects of atomistic–continuum interfaces that hamper domain decomposition methods
such as CADD (Shilkrot et al., 2002a, 2002b; Zamora et al., 2012), as well as finite temperature extensions of adaptively
remeshed or reconfigured QC methods (Kulkarni et al., 2008). In contrast to most existing multiscale or coarse-grained
methods (Chen et al., 2011), the representation of the complete set of balance laws renders CAC applicable to dynamic
and nonequilibrium processes involving mass, momentum, and/or energy transport (Xiong et al., 2014b), with the inter-
atomic potential or force field being the only empirical input. This work employs the embedded atom method potential
(Daw and Baskes, 1984) for Ni (Mishin et al., 1999, 2001). The numerical implementation code of CAC is parallelized and
is run on N = 72 processors, scaling as O(N). The present work considers balance of mass and momentum, without addressing
the energy equation, in view of the focus on dynamic effects of dislocation–void interactions.

3. Computational set-up and results

3.1. Effects of void spacings on the dislocation pinning–depinning

Fig. 1 shows the computational configuration of CAC models in this study. Single crystal Ni specimens
(�50 � 200 � 100 nm3) contain over 20 million atoms. The V-notch and four spherical voids with diameters of �5 nm are
initially introduced into the models. The distance between the V-notch tip and the centers of the voids is �40 nm. Here
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