ELSEVIER

Available online at www.sciencedirect.com
ScienceDirect

International Journal of Mechanical Sciences 50 (2008) 455-465

International Journal of

MECHANICAL
SC IENCES

www.elsevier.com/locate/ijmecsci

Robust-optimal active vibration controllers design for the uncertain
flexible mechanical systems possessing integrity via genetic algorithm

Shinn-Horng Chen®, Jyh-Horng Chou®™*, Chien-Jyh Chen?®

& Mechanical Engineering Department, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 807, Taiwan, ROC
® Mechanical and Automation Engineering Department, National Kaohsiung First University of Science and Technology,
1 University Road, Yenchao, Kaohsiung 824, Taiwan, ROC

Received 25 May 2006; received in revised form 18 September 2007; accepted 24 September 2007
Available online 29 September 2007

Abstract

In this paper, a robust-optimal control approach is proposed to treat the active vibration control (or active vibration suppression)
problem of flexible mechanical systems under mode truncation, linear time-varying parameter uncertainties in both the controlled and
residual parts, feedback gain perturbations, estimator gain perturbations and partial actuator failures. A sufficient condition is proposed
to ensure that the flexible mechanical systems with time-varying structured parameter uncertainties are asymptotically stable against
partial actuator failures. Systems which have such a property of keeping stable under partial actuator failures are said to possess
integrity, and this is an inherent property of MIMO systems. Based on the robust stability constraint and the minimization of a defined
H, performance, a hybrid Taguchi-genetic algorithm (HTGA) is applied to solve the optimal state feedback controller and observer
design problem of uncertain flexible mechanical systems. A design example of a flexible rotor system is given to demonstrate the

applicability of the proposed approach. It is shown that the proposed approach can obtain satisfactory results.
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1. Introduction

The flexible mechanical systems to be controlled are
often described by distributed-parameter models and so are
essentially infinite dimensional. Control of the entire
infinite modes is not possible. In a common strategy, most
high-frequency modes of the system are truncated as
residual part since they are difficult to excite, and only
some critical low-frequency modes are used for designing
the vibration controllers (see, for example, [1-14]; and
references therein). Those researchers divided the finite-
dimensional model into two parts: controlled part and
residual part. The controlled part, which is used for
designing the vibration controllers, is composed of those
critical modes which have large contribution to the
elastodynamic response, and the residual part is composed
of the remainder modes of the finite-dimensional model.
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The residual part may lead to control and observation
spillover that can destabilize one or more of the poorly
damped modes. Consequently, those researchers proposed
some methods in the above-mentioned literature to investi-
gate the problem of spillover suppression to avoid instability.

In flexible mechanical systems, the system parameters are
often subject to parameter uncertainties due to inaccuracies
in the calculations of the frequencies and damping due to
approximations in the structural model, material proper-
ties, mass, damping, and so forth. These parameter
uncertainties can degrade the system performance, and it
is sometimes possible to destabilize the system [9,11].
Recently, many articles ([6—11]; and references therein)
have addressed the active vibration control problem of
flexible mechanical systems under both residual modes and
linear structured parameter uncertainties. Note that the
results proposed by Lin et al. [11], Chou et al. [8], Chen
et al. [7] and Chen [6] are valid for linear time-varying
structured parameter uncertainties, whereas the results
given by Khot and Heise [9] and Khot and Oz [10] are
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applicable only to linear time-invariant structured para-
meter uncertainties. It is well known that any analysis used
for the time-varying case can be specified to the time-
invariant case (but not vice versa). That is, the results of
Lin et al. [11], Chou et al. [8], Chen et al. [7] and Chen [6]
are valid for both the time-invariant case and the time-
varying case. Besides, because it is impossible in practice to
precisely implement the active control law, it is reasonable
to consider the perturbations exist in the control gains,
due to the limited wordlength of digital controller or
the manufacturing inprecision of controller elements. So,
the perturbations in the presence of the feedback gain and
estimator gain are also considered in this paper. In
addition, a multivariable feedback control system may
become unstable when the feedback signals are switched
off by a failure in the actuators or the sensors. The system
possessing integrity means that the system still remains
asymptotically stable in the presence of such failures [15].
Till now, to the authors’ best knowledge, the problem of
stability robustness of the flexible mechanical systems
under mode truncation, linear time-varying parameter
uncertainties in both controlled and residual parts, feed-
back gain perturbations, estimator gain perturbations and
partial actuator failures has not been discussed in the
literature yet. That is, the problem on stability robustness
of the flexible mechanical systems under mode truncation,
linear time-varying structured parameter uncertainties in
both the controlled and residual parts, feedback gain
perturbations, estimator gain perturbations and partial
actuator failures is worth investigating.

On the other hand, only robust stability is often not
enough in control system design. The quadratic optimal
performance is also considered in many practical control
engineering applications. Hence, the robust-optimal active
vibration control designs are needed for robust stability
and performance design for flexible mechanical systems
under mode truncation, linear time-varying structured
parameter uncertainties, feedback gain perturbations,
estimator gain perturbations and partial actuator failures.
The robust-optimal active vibration control design is to
find a stabilizing controller and observer that minimize an
H, performance index (i.e., the integral of the squared error
(ISE) or the integral of the time-weighted squared error
(ITSE)) subjects to the stability robustness inequality
constraint. Therefore, the purpose of this paper is to use
the hybrid Taguchi-genetic algorithm (HTGA) for finding
the active vibration controllers of the flexible mechanical
systems with linear time-varying structured parameter
uncertainties in both controlled and residual parts, feed-
back gain perturbations, estimator gain perturbations and
partial actuator failures such that the control objective of
minimizing an H, performance index subject to the
stability robustness constraint is achieved. The reason
why the HTGA is applied in this paper is that Chou and his
associates have shown that the HTGA can obtain both
better and more robust results than those existing
improved genetic algorithms reported in the literature

[16,17]. In this paper, we determine the optimal controller
and observer gains by applying HTGA to directly minimize
a defined performance index.

This paper is organized as follows. The model of the
flexible mechanical system is described in Section 2. In
Section 3, a new robust stability condition is presented for
the flexible mechanical systems with linear time-varying
structured parameter uncertainties in both controlled and
residual parts, feedback gain perturbations, estimator gain
perturbations and partial actuator failures. The HTGA for
the robust-optimal active vibration controller design is
described in Section 4. A design example of flexible rotor
control system is also given in this section for demonstrat-
ing the applicability of the proposed approach. Finally,
Section 5 offers some conclusions.

2. System description

Consider the class of flexible mechanical systems
described by a generalized wave equation [2]
m(x)ufl(xa Z) + zfAl/zul(xa t) + AM(X, Z) Zf(x7 l)a (1)

which relates the displacement u(x, #) of the equilibrium
position of a body Q in the n-dimensional space to the
applied force distribution f{x, #). The operator A4 is a time-
invariant, symmetric, nonnegative differential operator
with a square root 4'% and domain D(A) is dense in the
Hilbert space H = L*(Q) with the usual inner product and
the associated norm. The mass density m(x) is a positive
function of the location x on the body; the change of
variables u(x, 1) — u(x, t)/ m(x)]/ 2 eliminates m(x) without
changing the properties of Eq. (1) and, henceforth, we will
assume this has been done and take m(x) =1 in Eq. (1).
The nonnegative number £ is the damping coefficient of the
flexible mechanical system and depends on the construction
materials and methods used. For structures such as
spacecraft, ¢ may be very small [2].

We will assume that the spectrum of the operator A
contains only isolated eigenvalues A, with corresponding
orthogonal eigenfunctions ¢(x) in D(A4) such that

O<i<lp<z<---

and

Ap(x) = Ay (x),  A2h(x) = 1 (),

which are the eigenfunctions forming a basis for H; this can
be guaranteed by the condition that 4 has compact
resolvent [2]. The eigenfunctions ¢,(x) are the mode shapes
of the flexible mechanical system, and the mode frequencies
are wy = /1,1( g

By applying the standard technique of the expansion
theorem with

L
ux, 1) =Y w(DPy(x), )
k=1
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