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Abstract

Uncertainties in a physical system can be modeled and analyzed by using probability theory or possibility theory, depending on the
amount of information available. In probability theory, uncertain variables are modeled using probability density functions (PDFs) and
then propagated through the system to obtain its reliability. In the absence of sufficient data to model a PDF, possibility theory, in which
variables are represented using fuzzy membership functions, can be used to propagate uncertainty. However, when dealing with a
combination of both probability distributions and fuzzy membership functions, the computational cost involved in estimating the
membership function of reliability increases exponentially because one reliability analysis, which is a computationally expensive
procedure, is performed at each possibility level to obtain the bounds on the reliability of the structure. To improve the computational
efficiency, a technique that uses response surface models and transformations of possibility functions is presented in this paper. The

efficiency and accuracy of the proposed methodology is demonstrated using numerical examples.
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1. Introduction

Uncertainties present in the design process need to be
quantified and propagated to obtain the reliability of a
structural system. They can be classified as aleatory
uncertainty and epistemic uncertainty. Aleatory uncertainty
is the inherent variation in the system whereas epistemic
uncertainty is the variation due to lack of knowledge in the
system. Typically, there is ample information to model
aleatory uncertainty as random variables and epistemic
uncertainty can be modeled using non-random variables
like possibility membership functions or intervals. When
there is enough data about a particular quantity, a
probability distribution can be assigned, and this random
uncertainty can be propagated using existing probabilistic
methods. In situations where sufficient information is not
available for defining a probability distribution, fuzzy
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theory can be used to represent the available data in an
analytical form. Using fuzzy theory, these variables can be
represented by membership functions based on their
possibility of occurrence or level of confidence. Once the
input variables are defined as possibility functions, the
possibility of the response can be estimated. But in most
problems, information might be available to represent some
variables with a probability distribution and some with a
membership function. Therefore, this paper focuses on
dealing with problems for which some uncertainties can be
quantified using fuzzy membership functions while some
are random in nature.

This methodology is developed to provide a capability
for analyzing safety of competing designs during the
preliminary design stage. During this stage, information
about the design variables that is required to model
random variation is typically unavailable and requires
modeling them as intervals or fuzzy variables. As the
design progresses additional information can be used to
modify the variable definitions and eventually approach
probabilistic system reliability analysis of the final design.
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In probability theory, the failure probability of a
structure is obtained by solving the multi-dimensional
integral

Py = /Q 7(X)dX. (1)

where pr is the probability of structural failure and f,.(X)
denotes the joint probability density function (PDF) of the
vector for the basic random variables, X = (xj, x2,...,
xn)T, which represent uncertain quantities such as loads,
geometry, material properties, and boundary conditions.
Furthermore,  is the failure region modeled by the limit-
state function or performance function g(X). The failure
region is defined by g(X)<0. Monte Carlo simulation can
be used to deal with this multi-fold integration. However, it
requires a large number of samples to accurately estimate
the small order of structural failure probabilities. To reduce
the computational cost, several algorithms [1-4] were
developed that make use of surrogate representations of
the failure surface and compute the failure probability.

Reliability analysis methods begin with the prediction of
the most probable failure point (MPP). The MPP is the
point in the design space that has the maximum probability
of failure. Once a good estimate of the MPP is obtained,
surrogate models representing the failure surface around
the MPP can be used to evaluate the failure probability.
The accuracy of the estimated probability of failure
depends on the validity of the approximation around the
MPP of the limit-state function.

The above multi-dimensional PDF integral is also
represented using convolution integral as described in
basic probability and statistics literature. For a failure
surface that is a linear combination of random variables
this convolution integral can be evaluated using Fast
Fourier transforms (FFT). In order to use FFT, the limit-
state function must be available as a separable closed-form
expression. Sakamoto et al. [5] used a response surface
approximation to get a closed-form expression for a
particular implicit limit-state function. Penmetsa and
Grandhi [6] used a Two-point Adaptive Nonlinear
Approximation (TANA2) at the MPP for obtaining a
closed-form expression for a limit-state function. Using
FFT, the joint density function of the random variables is
obtained efficiently and the failure probability is calculated
by integrating this function over the failure region. These
methods were developed to handle only random variables.

In the presence of non-random variables, Briabant et al.
[7] presented possibilistic approaches for structural opti-
mization and design. They proposed that it is possible to
evaluate fuzzy variables using a-cuts or membership levels,
as shown in Fig. 1. These a-cuts are different levels of
confidence bounds on the variable of interest. 100%
confidence represents a deterministic quantity and a 0%
confidence represents the widest bounds. Any level between
would be represented using the concept of a-cuts. At each
level, the variation of an uncertain parameter is defined by
a lower and an upper bound. Once the variables are defined
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Fig. 1. Membership function showing an a-cut.

as membership functions, the bounds on the response at
various o-cuts can be obtained. The Vertex method [8]
evaluates the function value at each of the vertices of the
design space, represented by the bounds on the variables,
to obtain the minimum and maximum values of the
response. This method works well for linear problems, but
fails to capture the minimum and maximum values for
nonlinear non-monotonic responses. For nonlinear pro-
blems, the bounds might be present within the design space
while the vertex method checks for the function value only
at the extremes of the design space. Some of the other
methods [9,10] use optimization techniques to calculate the
minimum and maximum value of the response within the
specified bounds.

All the methods discussed above consider either random
variables or fuzzy input, but do not accommodate a
combination of variables. Therefore, methods need to be
developed for dealing with problems comprising of mixed
uncertain variables. Moller et al. [11] introduced a
methodology for estimating the membership function of
the safety index by considering fuzzy randomness. They
formulated a Fuzzy First Order Reliability Method
(FFORM) that simultaneously permits the usage of fuzzy
variables and random variables. Using this method, the
membership function of the reliability index can be
estimated. But the calculation of the failure probability
from the safety index values is prone to errors.

In the presence of both random as well as fuzzy
variables, the computational cost involved in the develop-
ment of the membership function of reliability increases
because multiple reliability analyses, which by itself is a
computationally expensive procedure, is required at each
confidence level. This is because the entire bounds of the
fuzzy variables are to be explored to determine the bounds
of the reliability at a particular confidence level. One can
reduce the number of reliability analyses at each confidence
level by having the information about the configuration of
the fuzzy variables that correspond to the extreme values of
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