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Abstract

This paper investigates the stability robustness of nonclassically damped systems with multidirectional perturbations. Bounds on

uncertain parameters that maintain the stability of an asymptotically stable, linear multi-degree-of-freedom system with nonclassical

damping are derived using specific Lyapunov functions. The explicit nature of the construction permits us to directly express the

algebraic criteria in terms of physical parameters of the system. Numerical examples are given to illustrate the effect of the proposed

approach.
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1. Introduction

Nowadays, product departments in automotive industry
are using Finite Element models intensively to analyze and
solve a variety of engineering problems. These large
numerical models are deterministic, in that it is implicitly
assumed that all parameters are precisely known and that
the manufacturing process produces identical structures.
These assumptions are often not met, for example,
uncertainty exists on the level of model inaccuracy and
physical properties in an early design stage, when design
decisions must still be taken, so that dimensions and
material properties are not yet fixed. Such an uncertainty
should not be described in a probabilistic way because
there is not enough information available, so that assigning
a probability density function is a subjective change of the
problem definition. Uncertainties can lead to severe
degradation in performance and even dynamical instability
which is of great practical significance and usually an
undesirable feature of the behavior of practical systems. It

is therefore essential to choose the parameters so as to
avoid the possible occurrence of unstable behavior. Hence,
the problem of maintaining the stability of a nominal stable
system subjected to parametric perturbations has been an
active area of research for some time.
Most of previous results on robust stability are restricted

to bounds on the parameter uncertainties in the state-space
models, see, for example, Zhou and Khargonekar [1], Siljak
[2], Bien and Kim [3], Gao and Antsaklis [4], Pun et al. [5]
and the literature cited therein. Even though any second-
order system can be represented as an equivalent first-order
system, retaining the model in matrix second-order form
has many advantages. For example, by keeping the system
in matrix second-order form, symmetry of the mass,
damping and stiffness matrices, is preserved, which
otherwise would have been lost in first-order form of the
system. The symmetry of matrices is especially beneficial in
stability analysis of uncertain systems. In addition, it is
computationally efficient as the dimension of system is
lower than that of the first-order form, and sparsity and
any other special nature of the original matrices are
preserved which is useful in analysis and design. Stability
measures of second-order systems, however, have been
relatively scarce compared to those in the first-order form,
even for nominal cases. A necessary and sufficient
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condition for the asymptotic stability of the nominal
second-order system is the Routh–Hurwitz criterion that
has been employed to develop the design procedure for
stabilizing the second-order systems with variations in
inertia, damping and stiffness matrices [6]. However, the
Routh–Hurwitz criterion requires the knowledge of the
coefficients in the characteristic polynomial of the system
and the evaluation of certain determinants, which may be
rather difficult to apply when the order of the system is at
all large. Using the Lyapunov approach, robustness
bounds for the stability of second-order systems are
presented for unstructured perturbations in Hsu and Wu
[7] and for dependent parametric perturbations in Cao and
Shu [8]. The Lyapunov approach, however, involves
solving a 2nth-order Lyapunov matrix equation for a
choosing positive matrix. As a result, alternative methods
such as those which provide simpler conditions directly in
terms of the coefficient matrices prove to be more
attractive.

For a typical second-order system with positive definite
mass and stiffness matrices, it has been proved that the
equilibrium is asymptotically stable if the damping matrix
is also positive definite [9]. In 1997, Cox and Moro [10]
studied the stability of a class of nonlinear dynamic systems
whose linear part is almost classically damped and
proposed a stability criterion that bounds the degree of
the uncertain nonlinearity and deviation from classical
damping. Although the Rayleigh damping models or other
classical damping strategies are commonly used in the
stability analysis due to their simplicity, they may not
generally apply to real structures. Recently, Cao et al. [11]
investigated the problem of the stability robustness of
nonclassically damped systems with nonlinear uncertain-
ties. In Ref. [11], using a specific Lyapunov function,
bounds on nonlinear perturbations that maintain the
stability of an asymptotically stable system with nonclassi-
cal damping are derived and directly expressed in terms of
plant matrices.

This paper deals with the problem of the stability
robustness of nonclassically damped systems with multi-
directional perturbations. First of all, a simple algebraic
criterion for the stability of a class of second-order system
with symmetric mass, damping and stiffness matrices and
multiple uncertain parameters is proposed. Secondly, based
on specific Lyapunov functions, bounds on uncertain
parameters that maintain the stability of an asymptotically
stable, linear system with nonclassical damping are derived.
The stability conditions of our criteria are directly
expressed in terms of plant matrices, thus easy to check
via simple algebraic computation. Since the structure
information of the plant matrices are taken into considera-
tion, the new criteria can significantly reduce the con-
servatism found in the literature. Moreover, the robustness
bounds are not necessary symmetric with respect to the
origin in the parameter space, as in the previous results [8],
and this can significantly reduce the conservatism too.
Finally, three simple examples are given for demonstrating

the merit of the stability measures and to compare them
with the existing ones.
The following notation will be used throughout this

paper:

R ðCÞ the set of all real (complex) numbers
Rn ðCn

Þ the n-dimensional real (complex) space
Rn�n ðCn�n

Þ the set of all real (complex) n� n matrices
I the unit matrix
ljðAÞ the jth eigenvalue of matrix A

lmaxðAÞ (lmaxðAÞ) the maximum (minimum) eigenvalue of
Hermitian matrix A

AT the transpose of matrix AbA the sum of matrix A and its transposed matrix AT;bA ¼ Aþ AT

kxk the Euclidean norm of vector x

detðAÞ the determinant of matrix A

rðAÞ the spectral radius of matrix A

kAk the spectral norm of matrix A; kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lmaxðA

�AÞ
p

A40 ðAo0Þ the positive (negative) definite matrix

2. System descriptions and mathematical lemmas

A large class of dynamic systems in the field of
mechanics and structures can be represented by a vector
second-order differential equation of the form

MðqÞ €xðtÞ þDðqÞ _xðtÞ þ KðqÞxðtÞ ¼ 0, (1)

where x 2 Rn is the configuration vector, q 2 Rm is a
parametric vector, M, D and K 2 Rn�n are the mass,
damping and stiffness matrices, respectively. In general, the
parameters of the system, which are available for analysis,
appear in the mass, the damping and the stiffness matrices.
Therefore, a very important property assumed here is that
the second-order differential (1) is affine in these para-
meters. By this affine representation we mean that

MðqÞ ¼M0 þ
Xm

i¼1

qiMi; DðqÞ ¼ D0 þ
Xm

i¼1

qiDi,

KðqÞ ¼ K0 þ
Xm

i¼1

qiKi, ð2Þ

where the nominal mass, damping and stiffness matrices
M0, D0 and K0 are assumed to be symmetric positive
definite; qi ði ¼ 1; 2; . . . ;mÞ are real uncertain parameters;
and Mi, Di and Ki ði ¼ 1; 2; . . . ;mÞ are given real constant
matrices.
The following lemmas are cited and will be used in the

proof of our main results.

Lemma 1 (Anderson and Bitmead [9]). The system de-

scribed in (1) is asymptotically stable if the mass, damping

and stiffness matrices are symmetric positive definite, i.e.,

M40; D40; K40. (3)
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