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Abstract

The buckling of thin rectangular plates with nonlinearly distributed loadings along two opposite plate edges is analyzed by using the

differential quadrature (DQ) method. The problem is considerably more complicated since it requires that first the plane elasticity

problem be solved to obtain the distribution of in-plane stresses, and then the buckling problem be solved. Thus, very few analytical

solutions (the only one available in the literature is for rectangular plates with all edges simply supported) have been available in the

literature thus far. Detailed formulations and solution procedures are given herein. Nine combinations of boundary conditions and

various aspect ratios are considered. Comparisons are made with a few existing analytical and/or finite element data. It has been found

that a fast convergent rate can be achieved by the DQ method with non-uniform grids and very accurate results are obtained for the first

time. It has also been found that the DQ results, verified by the finite element method with NASTRAN, are not quite close to the newly

reported analytical solution. A possible reason is given to explain the difference.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The buckling problem of a thin rectangular elastic plate
subjected to in-plane compressive and/or shear loading is
important in the aircraft, civil and ship-building industries.
There have been very few previous solutions for the case of
nonlinearly distributed edge loadings. Perhaps this scarcity
is due to the additional complexity of having to first solve
for the internal pre-stress distribution as a problem in
plane-stress elasticity, and then solve for the buckling
problem [1]. The first work in this area was perhaps due to
Van der Neut [2] in 1958, which considered a uniaxial
compressive loading with a half sine distribution. Later,
Benoy [3] considered a uniaxial compressive loading with a
parabolic distribution and obtained an energy solution . It
was pointed out by Bert and Devarakonda [1] that the
works of Van der Neut [2] and Benoy [3] suffered from
some serious deficiencies, such as: the distribution of the

x-direction in-plane normal stress (sx) was assumed to
depend only on the y coordinate; and the contributions of
the y-direction in-plane normal stress (sy) and the in-plane
shear stress (txy) were ignored. Actually there is a stress-
diffusion phenomenon that causes all three in-plane stress
distributions to vary with x as well as with y. Recently, Bert
and Devarakonda [1] removed these deficiencies and thus
yielded a more accurate buckling load for the case of a thin
rectangular plate with all boundaries simply supported
under sinusoidal edge loadings.
Due to the complicated mathematical structure of the

other boundary conditions, obtaining closed-form solu-
tions for other combinations of boundary conditions is
generally difficult. Therefore, approximate continuum or
numerical methods must be resorted to for solutions. There
are many such methods available, such as Rayleigh–Ritz
method, finite element method, finite difference method,
and Fourier series method. The differential quadrature
(DQ) method, introduced by Bellman and Casti [4] in 1971,
is an efficient numerical technique for the solution of initial
and boundary value problems. Since Bert et al. [5] first used
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the method to solve problems in structural mechanics in
1988, the method has been applied successfully to a variety
of problems [6,7].

It was found [8] that solutions by the DQ method were
very sensitive to grid spacing when it was used for solving
buckling problems of anisotropic rectangular plates even
under uniform edge loadings. Thus, non-uniform grid
spacing [9] and new ways to apply for the boundary
conditions [10–12] were proposed. Accurate buckling loads
of anisotropic plates under uniform or linearly distributed
edge compressive loadings were obtained by DQ method
[13,14]. Since pure stress boundary conditions are con-
sidered, therefore, instead of solving the second-order
partial differential equations in terms of displacements, the
fourth-order partial differential equation in terms of Airy
stress functions, the compatibility equation, is solved
by the DQ method for obtaining the in-plane stress
distributions.

In view of the fact that very few previous solutions are
available for the case of nonlinearly distributed edge
loadings and that the DQ method and its equivalents have
only been successfully used to obtain buckling loads for the
cases of uniform or linearly distributed loadings, the DQ
method is extended to analyze the buckling problems of
thin rectangular plates subjected to parabolic distributed
in-plane loadings. Formulations and procedures are given.
The buckling loads for rectangular plates with nine
combinations of boundary conditions and various aspect
ratios are obtained and compared with available data. It
has been found that a fast convergent rate can be achieved
by the DQ method with non-uniform grids and very
accurate results can be obtained. It has been also found
that the DQ results, verified by the finite element method
with NASTRAN, are not quite close to the newly reported
analytical solution. A possible reason is given to explain
the difference. Some conclusions are drawn based on the
results reported herein.

2. Governing differential equations

Consider first the problem of in-plane elasticity, where
an isotropic thin rectangular plate with side lengths of a

and b, shown in Fig. 1 is under uniaxial parabolic

distributed in-plane compressions. Methods based on stress
functions are to be used for obtaining in-plane stresses,
since all boundary conditions are in terms of stresses. The
well-known Airy stress function (j) without body forces,
satisfying the governing differential equations automati-
cally, are as follows:

sx ¼
q2j
qy2

; sy ¼
q2j
qx2

; txy ¼ �
q2j
qxqy

. (1a2c)

The Airy stress function should satisfy the following
compatibility differential equation,

q4j
qx4
þ 2

q4j
qx2qy2

þ
q4j
qy4
¼ 0. (2)

Once j is obtained, the in-plane stresses sx, sy, txy can be
computed by Eq. (1). To obtain solution j numerically by
the DQ method, appropriate boundary conditions should
be applied. It should be emphasized that one cannot apply
the stress boundary conditions in terms of differential
quadrature directly. Let X̄ and Ȳ are the known in-plane
load components acting on the boundaries in the x and y

directions; then j and its first partial derivatives along
boundaries can be computed by

jB ¼

Z B

A

ðyB � yÞX̄ ds�

Z B

A

ðxB � xÞȲ ds,

jx

� �
B
¼

qj
qx

� �
B

¼ �

Z B

A

Ȳ ds,

jy

� �
B
¼

qj
qy

� �
B

¼

Z B

A

X̄ ds, ð3a2cÞ

where A and B are two arbitrary distinguished points on
the boundary. Since superimposing a linear function to
Airy stress function (j) will not affect the stress values, one
can assume that

jA ¼ 0;
qj
qx

� �
A

¼ 0;
qj
qy

� �
A

¼ 0. (4a2c)

One can choose point 1 shown in Fig. 2 as point A. For the
loading to be considered in this paper, shown in Fig. 1,
Ȳ ¼ 0 and the only non-zero X̄ along the plate boundary
is:

X̄ x ¼
a

2

� �
¼

4s0
b2

y2 �
b2

4

� �
,

X̄ x ¼ �
a

2

� �
¼ �

4s0
b2

y2 �
b2

4

� �
. ð5a;bÞ

Substituting Eq. (5) into (3) and using Eq. (4) yield

ð1Þ y ¼ �
b

2
; ji ¼

qj
qy

� �
i

¼ 0, (6a)

ð2Þ x ¼
a

2
; ji ¼

s0
48b2

16y4
i � 3b4

� 16b3yi � 24b2y2
i

� �
,

qj
qx

� �
i

¼ 0, ð6bÞ
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Fig. 1. Rectangular plates under parabolic distributed edge compressions.
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