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a b s t r a c t

Dynamic terms are included in the balance equations that govern a higher-order crystal
plasticity formulation. The resulting equations are integrated in time by the central-differ-
ence explicit method. The methodology avoids solution methods based on the inversion of
the associated stiffness matrices. This is a great advantage of the proposed methodology,
considering that these matrices tend to be highly ill-conditioned. As the solution becomes
dependent on the time-step size used in the integration, a stability study is presented. Only
a rate independent constitutive law is taken into account. As examples, a crystal layer and a
composite material under simple shear and the wedge indentation of a single crystal are
considered. Comparisons with an implicit quasi-static solution method show the robust-
ness of the proposed methodology, but reveal an elevated computational cost related to it.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous higher-order plasticity theories have been proposed in the last few years. The attractive aspect of this kind of
formulation is the introduction of higher-order boundary conditions. For instance, it permits to capture the formation of
boundary layers in grain crystals or to associate boundary conditions to the flux of dislocations. In these cases, kinematic
variables linked to plasticity are considered independent variables. Depending on the formulation these variables can be
plastic strains (e.g. Shu and Fleck, 1999), crystal slips (e.g. Gurtin, 2002), density of dislocations (e.g. Evers et al., 2004),
etc. Balance equations are written in terms of these variables. Through the principle of virtual work, formulations amenable
to implementation in a finite element framework can be built. Kinematic plastic variables can be then obtained by standard
solution methods normally used in the finite element method. Basically, in the solution method, a stiffness matrix associated
to the kinematic plastic variables has to be inverted in order to determine the variables. This stiffness matrix is spatially inte-
grated in the finite elements by standard quadrature methods, for instance Gauss quadrature.

The problem in this case is that this matrix can be very ill-conditioned or even singular. Solutions by ordinary solvers used
in finite element algorithms can be incorrect or unreachable, since uniqueness of the solution process can not be guaranteed.
Lele and Anand (2008), Kuroda (2011) and Bittencourt, 2012 have observed unexpected behaviors and/or convergence prob-
lems considering higher-order crystal plasticity models. In general these problems have a tendency to increase when (1)
multiple slip systems are activated, (2) higher-order term contribution increases and (3) deformation gradients are non-uni-
form. In the last case, if a rate independent formulation is used, necessarily some of the points of the domain will be plastic
and others elastic. Elastic Gauss points will not contribute to the spatial integration of the plastic stiffness matrix. The result
is an under-integrated stiffness matrix that can result singular. A possible solution is to add an arbitrary contribution for
elastic points (De and Mülhaus, 1992; Bittencourt, 2012), but the result is a solution dependent on this arbitrary contribu-
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tion. To shift to a rate dependent formulation is not a guarantee of solution, since Gauss points with low resolved
stresses will contribute with infinitely high values to the stiffness matrix, which can lead to a numerical locking, as seen
in Bittencourt (2012).

An explicit solution procedure that completely eliminates inversion of stiffness matrices seems to be an appealing alter-
native to solve this kind of problem and it is the methodology pursued in the present work. The higher-order crystal plas-
ticity developed by Gurtin (2002) is followed. An application of explicit solution method to nonlocal crystal plasticity can be
found in Lee and Han (2012), but higher-order terms are not included. The author is not aware of other publications in this
context, so the purpose of this work is mainly exploratory. Inertia effects are added in the balance equations and solution in
time is done by the explicit central-difference method. Details of the crystal plasticity formulation are given in Section 2. In
Section 3 details of the solution method are described. In Section 4 a stability study of the formulation is presented. Appli-
cations are regarded in Section 5. Two simple cases, where solutions are well-known, are studied: a layer and a model com-
posite material are subjected to simple shear. Finally the wedge indentation of a single crystal is shown. Comparisons with
an implicit quasi-static formulation are emphasized. Conclusions are presented in Section 6.

2. Cristal plasticity formulation

The gradient of the displacement vector, ui;j, is written as the sum of an elastic ue
ij and a plastic up

ij part. The plastic part
occurs by crystallographic slip on a set of slip planes. With sðbÞi and mðbÞi unit vectors specifying the slip direction and the slip
plane normal, respectively, for slip on a system b, the plastic part of the displacement gradient is given by

up
ij ¼

X
b

cðbÞsðbÞi mðbÞj ; ð1Þ

with cðbÞ the total slip on the system b. Attention is confined to plane strain. Elastic strains are considered isotropic. Greek
superscripts, with no summation convention, are used to label the slip systems. Slip system directions are fixed throughout
calculations.

Resolved stress sðbÞ on slip system b can be calculated from Cauchy stresses rij as:

sðbÞ ¼ PðbÞij rij; PðbÞij ¼
1
2

sðbÞi mðbÞj þ sðbÞj mðbÞi

� �
: ð2Þ

The stress rij is given in the rate form

_rij ¼ Cijkl _uk;l � Cijkl

X
a

_cðaÞPðaÞkl ; ð3Þ

with ð�Þ ¼ @ðÞ=@t, where t is time. Cijkl is the elasticity tensor.
Attention is focused on rate independent material behavior and cases where the statistically distributed dislocations are

the only to affect the dissipative hardening. Then the state of this hardening can be defined by,

pðbÞ ¼ rðbÞsgn _cðbÞ; ð4Þ

with rðbÞ having the initial value r0 for all b and the corresponding pðbÞ having the initial value p0. rðbÞ evolves as

_rðbÞ ¼
X

a
hðbaÞj _cðaÞj; hðabÞ ¼ qH0 þ ð1� qÞH0dab; ð5Þ

where H0 is a prescribed constant and q is the latent hardening ratio. The relation (4) applies only when there is flow on slip
system b, i.e. when _cðbÞ – 0.

A defect stress Tij is also present due to geometrically necessary dislocations. Gurtin (2002) proposed that it is a function
of the tensor Gij, the density of geometrically necessary dislocation, as follows:

Tji ¼ ‘2p0Gij; ð6Þ

where ‘ is a material length parameter, and,

Gij ¼ �irs

@up
js

@xr
: ð7Þ

�ipq is the alternating tensor.
The defect stress Tij produces ‘‘microstresses’’ nðbÞi on the slip system given by

nðbÞi ¼ �ipqmðbÞp TrqsðbÞr : ð8Þ

Confining attention to plain strain deformation, assuming that sb
3 ¼ mb

3 ¼ 0, the microstress can be rewritten as (details
can be found in Bittencourt et al. (2003)):

nðbÞi ¼ ‘
2p0sðbÞi

X
j

sðbÞj sðjÞj cðjÞ
;l sðjÞl : ð9Þ
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