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a b s t r a c t

The present paper provides the definition of resultant Burgers’ vector and the related dis-
location density tensor in terms of the plastic deformation, regarded as that creating dis-
locations without deforming the crystal lattice. Based on this kinematics the
thermodynamic framework of the finite strain continuum dislocation theory is developed.
The proposed theory is then applied to the problem of antiplane constrained shear admit-
ting an analytical solution.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In view of a huge number of dislocations appearing in plastically deformed crystals (which typically lies in the range
108 � 1015 dislocations per square meter) the necessity of developing the continuum dislocation theory (CDT) to describe
the evolution of dislocation network in terms of mechanical and thermal loading conditions becomes clear to all researchers
in crystal plasticity. However, the development of such a theory requires two questions to be clarified: (i) what are kinemat-
ically independent and dependent quantities characterizing the deformed state of crystals with dislocations and the rate of
change of the dislocation network, (ii) how to specify energy and dissipation as functions of these kinematic quantities.

Among the above two questions the first one is the most crucial. To be able to answer it let us analyze the dislocation
density tensor which is the key kinematic quantity in CDT. Tracing back the whole literature on finite strain CDT (Kondo,
1952; Bilby et al., 1955, 1957; Kröner, 1958, 1960; Berdichevsky, 2006a, 1967; Naghdi and Srinivasa, 1993; Le and Stumpf,
1996a,b,c; Ortiz and Repetto, 1999; Ortiz et al., 2000; Cermelli and Gurtin, 2001; Acharya and Bassani, 2001; Gurtin, 2006;
Clayton et al., 2006; Yavari and Goriely, 2012) we could not find the commonly accepted and convincing definition of this
quantity. The majority of past and contemporary authors (see, e.g. Le and Stumpf, 1996b; Acharya and Bassani, 2001; Yavari
and Goriely, 2012), following the original idea of Kondo (1952) and Bilby et al. (1955), adopted the following definition of the
resultant Burgers vector

br ¼ Fe �
I

c
Fe�1 � dy; ð1Þ

with Fe being the elastic deformation and c any close and piecewise smooth contour in the current configuration along which
the integral is taken. As we will see later, the vector defined in this way is related to, but does not represent the true closure
failure in dislocated crystals induced by the macroscopic plastic deformation. Ortiz and Repetto (1999) defined the resultant
Burgers vector in a completely different way
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br ¼
I
C

Fp � dx; ð2Þ

with Fp being the plastic deformation and C any close and piecewise smooth contour in the reference configuration along
which the integral is taken. Formula (2) turns out to be valid for single crystals having one active slip system. However, it
will be shown that (2) is not invariant with respect to an arbitrary superimposed uniform plastic deformation which does
not produce additional dislocations inside the crystal. Cermelli and Gurtin (2001) formulated three requirements which
must be fulfilled by the true Burgers vector (see also Gurtin (2006) as well as the discussions of that paper in Acharya
(2008) and Ozakin and Yavari (2013)). Their first and most important requirement was that the true Burgers vector should
measure the local closure failure per unit area of the so-called ‘‘intermediate’’ or relaxed configuration. Cermelli–Gurtin’s
first requirement seems quite questionable due to the following reason: the inverse ‘‘elastic’’ deformation, based on Kröner’s
‘‘thought experiment’’ of cutting the representative volume element and releasing dislocations to the boundary to have the
stress- and dislocation-free crystal, is not elastic because it moves dislocations to the boundary and changes the dislocation
content inside the specimen. Thus, the concept of ‘‘intermediate’’ configuration originating from Kröner’s thought experi-
ment is misleading and consequently Cermelli–Gurtin’s first requirement is open to doubt. Berdichevsky (2006a) introduced
the proper measure of the resultant closure failure leading to the dislocation density tensor

T ¼ �Fp�1 � ðFp �rÞ: ð3Þ

Unfortunately, he did not provide arguments or examples of the macroscopic plastic deformation2 supporting formula (3).
The example of crystal with one dislocation, traditionally considered in the physics of dislocations when its Burgers vector is
defined (Hirth and Lothe, 1982; Nabarro, 1967; Friedel, 1964; Weertman and Weertman, 1966), does not shed light on the def-
inition of resultant Burgers vector for macroscopic plastic deformation as the deformation creating a large number of
dislocations.

The aim of this paper is twofold. First, we want to critically examine the kinematics of finite elastoplastic deformation
based on the multiplicative resolution of the deformation gradient into its elastic and plastic parts (Bilby et al., 1957). Attrib-
uting the active role to the plastic deformation as that creating dislocations without deforming the crystal lattice, we will
show how the closure failure arises naturally from inhomogeneous macroscopic plastic deformation having a large number
of dislocations. Then, the resultant Burgers vector must be defined in such a way that it is invariant with respect to a super-
imposed homogeneous plastic deformation which does not create additional dislocations inside the volume element of the
crystal. With this firmly established kinematics of finite elastoplastic deformation, the whole machinery of small strain CDT
which is well understood (Nye, 1953; Bilby, 1955; Kröner, 1955, 1992; Gurtin, 2002; Berdichevsky, 2006a,b; Berdichevsky
and Le, 2007; Kochmann and Le, 2008a,b, 2009; Le and Sembiring, 2008a,b, 2009; Kaluza and Le, 2011; Le and Nguyen,
2010, 2012, 2013) can be extended to the finite strain CDT, which is done in the second part of this paper. We then illustrate
the application of the theory to the problem of finite antiplane constrained shear which admits an exact analytical solution in
terms of the elliptic functions.

The paper is organized as follows. After this short introduction we develop in Section 2 the kinematics of finite elastoplas-
tic deformation. Section 3 represents the thermodynamic framework of the nonlinear CDT. Sections 4 and 5 are devoted to
the problem of antiplane constrained shear. Finally, Section 6 concludes the paper.

2. Kinematics

One of the fundamental, and at the same time most difficult, feature of plastic deformation is that Cauchy–Born’s rule is
not applicable to it even for small strains. To clarify this matter let us consider the resolution of the deformation gradient
F ¼ @y=@x into elastic and plastic parts

F ¼ Fe � Fp: ð4Þ

In general, the elastic and plastic deformations Fe and Fp cannot be gradients of global maps (they are therefore called incom-
patible). Nevertheless, we may suppose that they are orientation preserving so that

Jp ¼ det Fp > 0; Je ¼ det Fe > 0:

This means, Fp and Fe have inverse deformations, denoted correspondingly by Fp�1 and Fe�1. The resolution (4) was first intro-
duced by Bilby et al. (1957) as a basic assumption to develop the kinematics of elastoplastic bodies with continuously dis-
tributed dislocations. In that paper F; Fe, and Fp are called the shape deformation, the lattice deformation, and the dislocation
deformation, respectively. We keep close to the point of view of Bilby et al. (1957) by attributing an active role to the plastic
deformation: Fp is the deformation creating dislocations (either inside or at the boundary of the volume element) or changing
their positions in the crystal without deforming the crystal lattice. In contrary, the elastic deformation Fe deforms the crystal
lattice having frozen dislocations. Note that this physical interpretation differs essentially from that of Kröner (1958), who
introduced first the inverse elastic deformation Fe�1 as the deformation releasing all dislocations in the current state to

2 This critisism applies to all the above cited papers.
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