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a b s t r a c t

Efficient spectral methods are developed to predict the micromechanical behaviour of plas-
tically deforming heterogeneous materials. The direct and mixed variational conditions for
mechanical equilibrium and strain compatibility are formulated in a framework that cou-
ples them to a general class of non-linear solution methods. Locally evolving microme-
chanical fields in a sheared polycrystalline material governed by a phenomenological
crystal plasticity constitutive law are used to validate the methods, and their performance
at varying material heterogeneities is benchmarked. The results indicate that the solution
method has a dominant influence on performance and stability at large material heteroge-
neities, and significant improvements over the conventional fixed-point approach are
obtained when higher-order solution methods are employed. Optimal solution strategies
are devised based on this and applied to an idealised dual-phase polycrystalline aggregate.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mapping the mechanical properties of microstructures in relation to its myriad configurations is a fundamental task in
the design optimisation of heterogeneous materials (Kalidindi, 2012). Traditional methods to characterise microstructure–
property relationships are expensive and slow as they rely heavily on experimentation. Alternatively, high-fidelity numerical
predictions can be used to effectively substitute this process. In recent years, powerful numerical tools have been developed
to predict rigorous bounds on the effective response of statistically defined classes of microstructural aggregates (Lebensohn
et al., 2004). More accurate predictions rely extensively on the use of the finite element method (FEM) to obtain locally
resolved micromechanical fields (Cailletaud et al., 2003; Mika and Dawson, 1999; Clayton and McDowell, 2003). However,
the size of the representative microstructural volume element (RVE) that can be treated by FEM calculations is limited by the
large computational cost involved. A promising alternative to FEM in recent years has been the spectral method.

The spectral method was originally introduced by Moulinec and Suquet (1994, 1998) to compute the micromechanical
response of elastic composite materials, and has since been generalised to rigid-viscoplastic (Lebensohn, 2001) and elas-
to-viscoplastic (Lebensohn et al., 2012) materials, with Eisenlohr et al. (2013) developing a further extension to the case
of finite strains and general (arbitrary) constitutive descriptions. The spectral method has been successfully applied to treat
polycrystalline materials (Grennerat et al., 2012; Lebensohn et al., 2008; Lebensohn et al., 2009; Lebensohn et al., 2013;
Lefebvre et al., 2012), and its efficiency over FEM in this context has been demonstrated (Prakash and Lebensohn, 2009;
Liu et al., 2010; Eisenlohr et al., 2013).
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Applications to heterogenous materials, however, are limited by the slow convergence of the fixed-point iterative method
when it is applied to materials with a large contrast in the local stiffness (Michel et al., 2001). Several approaches have been
proposed to overcome this limitation. Accelerated schemes have been introduced by Eyre and Milton (1999) and Monchiet
and Bonnet (2012) for materials with large property contrasts. For the case of materials with infinite property contrasts
Michel et al. (2001) suggested a method based on augmented Lagrangians that is also suitable for the simulation of void
growth (Lebensohn et al., 2013). Improved convergence has also been demonstrated through the use of FOURIER space filtering
strategies (Kaßbohm et al., 2006; Brisard and Dormieux, 2010) and efficient alternatives to the fixed-point solution method
of the original approach (Zeman et al., 2010; Brisard and Dormieux, 2010).

However, these approaches are limited to the treatment of simple material models. An extension to the case of general
constitutive descriptions in a finite-strain context, which is better suited to describe plastically deforming heterogeneous
materials, is the aim of the present study. A direct and mixed variational approach is used to formulate accelerated spectral
methods in a framework that can leverage efficient non-linear solution methods. A flexible implementation of finite-strain
crystal plasticity constitutive models (Roters, 2011; Roters et al., 2012) is then interfaced with these methods for physically
appropriate models of the underlying deformation mechanisms in heterogeneous materials. The proposed methods are val-
idated for polycrystalline materials and simple representations of dual-phase microstructures are then used to illustrate
their performance.

This study is organised as follows: the derivation of the direct and mixed spectral formulations are presented in Section 2
followed by an outline of their numerical implementation in Section 3. In Section 5, the proposed methods are validated and
the results of simulations as outlined in Section 4 are discussed. A summary is provided in Section 6 along with perspectives
for future applications.

2. Theory

2.1. Kinematics

B0 � R3 is a hexahedral microstructural domain of interest on which a macroscopic deformation gradient F is imposed.
The resulting deformation defines a field vðxÞ : x 2 B0 ! y 2 Bmapping points x in the reference configuration B0 to points y
in the deformed configuration B. This deformation map can be decomposed as the sum of a locally fluctuating displacement
field ew and the imposed macroscopic displacement field

vðxÞ ¼ Fxþ ewðxÞ; ð1Þ

for which periodicity conditions are enforced in the sense that ew� ¼ ewþ on corresponding surfaces @B� and @Bþ.
The total deformation gradient, given by F ¼ @v=@x ¼ v�r ¼ Gradv, can similarly be decomposed as the sum of the

imposed macroscopic deformation gradient, F, and the locally fluctuating displacement gradient, eF:

F ¼ Fþ eF with eF ¼ @ ew
@x
¼ ew �r ¼ Grad ew: ð2Þ

2.2. Static equilibrium

The material response is governed by an arbitrary rate-dependent constitutive law that relates the deformation gradient
to the first PIOLA–KIRCHHOFF stress, P, at every material point in the reference configuration through a strain energy density
functional, W:

PðxÞ ¼ dW
dFðxÞ ¼ fðx;F; _F; nÞ; ð3Þ

where n is a set of evolving internal variables. P at x may be a function of its neighbourhood, as in the case of a nonlocal
material point model.

2.2.1. Direct variational formulation
In the direct formulation, the equilibrium deformation field is obtained by minimisingW over all admissible deformation

fields (i.e. satisfying the prescribed macroscopic deformation field and local periodicity conditions in the sense of Eq. (1)). In
the absence of external body forces, the stationary condition expressed in real and FOURIER

1 space follows as:

min
v
W ) Div PðxÞ ¼ F�1 PðkÞ ik½ � ¼ 0; ð4Þ

which is equivalent to finding the root of the residual body force field

1 Quantities in real space and FOURIER space are distinguished by notation QðxÞ and QðkÞ, respectively, with x the position in real space, k the frequency vector
in FOURIER space, and i2 ¼ �1. F�1 �½ � denotes inverse FOURIER transform.
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