Accepted Manuscript

One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy

Shan Jiang, Li Hua, Zilong Guo, Lin Sun

PII: S0928-4931(17)32620-6

DOI: doi:10.1016/j.msec.2018.04.047

Reference: MSC 8504

To appear in: Materials Science & Engineering C

Received date: 6 July 2017 Revised date: 26 March 2018 Accepted date: 16 April 2018

Please cite this article as: Shan Jiang, Li Hua, Zilong Guo, Lin Sun, One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Msc(2017), doi:10.1016/j.msec.2018.04.047

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

One-pot green synthesis ofdoxorubicin loaded-silica nanoparticles for in vivo cancer

therapy

Shan Jiang^{1#}, Li Hua^{2#}, Zilong Guo^{1#},Lin Sun^{1*}

¹ College of Chemistry, Jilin University, Changchun, P. R. China 130012

²Department of Immunology, Norman Bethune College of Medicine, Jilin University,

Changchun, P. R. China130021

*Corresponding author.

E-mail address: slin168168@jlu.edu.cn

#These authors contributed equally to this work

Abstract

The present work reveals a new and simple one-pot green method to load doxorubicin

(DOX) drugs in silica nanoparticles for efficient in vivo cancer therapy. The synthesis

of DOX loaded silica nanoparticles (SiNPs/DOX) is based on the efficient

encapsulation of DOX in surfactant Tween 80 micelles which act as a template for the

formation of silica nanoparticles. The release profile, cellular uptake behavior,

cytotoxicity and antitumor effect of SiNPs/DOX nanoparicles were investigated and

compared to free DOX. The silica nanoparticles improved the cellular drug delivery

efficiency and exhibited high cytotoxicity, successfully achieving the inhibition of

tumor growth. Notably, the tumor size and weight of SiNPs/DOX group was 2-fold

and 1.7-fold smaller than that of free DOX group, and 4-fold and 2-fold smaller than

that of PBS group. The one-pot green synthesis system may have the potential to be

developed as a promising drug delivery system.

Keywords

1

Download English Version:

https://daneshyari.com/en/article/7865970

Download Persian Version:

https://daneshyari.com/article/7865970

<u>Daneshyari.com</u>