Accepted Manuscript

ZnO-SiO2 nanohybrid decorated sustainable geopolymer retaining anti-biodeterioration activity with improved durability

Manas Sarkar, Moumita Maiti, Soumen Maiti, Shilang Xu, Qinghua Li

PII: S0928-4931(17)33925-5

DOI: doi:10.1016/j.msec.2018.07.005

Reference: MSC 8717

To appear in: Materials Science & Engineering C

Received date: 29 September 2017

Revised date: 25 June 2018 Accepted date: 1 July 2018

Please cite this article as: Manas Sarkar, Moumita Maiti, Soumen Maiti, Shilang Xu, Qinghua Li , ZnO-SiO2 nanohybrid decorated sustainable geopolymer retaining anti-biodeterioration activity with improved durability. Msc (2018), doi:10.1016/j.msec.2018.07.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

ZnO-SiO₂ nanohybrid decorated sustainable geopolymer retaining antibiodeterioration activity with improved durability

Manas Sarkar^{1*}, Moumita Maiti^{2*}, Soumen Maiti³, Shilang Xu^{1⊠}, Qinghua Li¹

¹ Institute of Advanced Engineering Structures and Materials, College of Civil engineering and Architecture, Zhejiang University, China

²College of Biosystems Engineering and Food Science, Zhejiang University, China ³ CENIMAT/I3N, Faculdade de Ciências e Tecnologia, FCT Portugal

Abstract:

Geopolymer, consists of industrial by-product fly ash, and alkaline activator, possesses similar strength along with durability like conventional cement composite, is an alternative construction substantial of Portland cement in current scenario. Corrosion of the concrete materials resulted mainly from the chemical degradation. Besides chemical degradation, biogenic-deterioration is also another alarming issue especially in the sewer systems, bridge piers, several pipelines and offshore platforms and the need to act on it is long-standing. In this study, application of zinc oxide-silica nanohybrid based sustainable geopolymer (GM_{ZnO-Si}) has been investigated for the development of a sustainable, anti-bio deteriorate cementitious material having significant mechanical strength and durability. Initially, zinc oxide nano-rods (ZnO NRs) have been synthesized and spherical silica nanoparticles were decorated on the surface of ZnO NRs. The ZnO-SiO₂ composite was characterized by various techniques (FTIR, XRD, FESEM, EDS, TEM, and XPS). Ambient temperature cured GM_{ZnO-Si} mortar was further explored in terms of mechanical strength, durability, mechanistic anti-microbial (E. coli, S. aureus, A. niger) influences. Mechanical properties of GM_{ZnO-Si} are found significantly higher than that of control samples. MIC, MBC, and MFC results demonstrate enhanced anti-microbial efficacy of GM_{ZnO}-Si. Inner permeability assay, reactive oxygen species generation and microscopic images of cell wall rupture and DNA damage studies supported the detailed understanding of anti-microbial activities. These experimental findings suggest that incorporation of ZnO-SiO₂ hybrid in geopolymer will pave the way for biodeterioration resistant concrete with enhanced mechanical and structural behaviour.

Keywords: ZnO-SiO₂ nanohybrid, Geopolymer, Anti-microbial activity, Durability, Mechanical and structural behaviour.

Corresponding Authors: Prof. Shilang Xu; Email ID: <u>slxu@zju.edu.cn</u>

*Authors are equally contributed.

Download English Version:

https://daneshyari.com/en/article/7865976

Download Persian Version:

https://daneshyari.com/article/7865976

<u>Daneshyari.com</u>