Accepted Manuscript

Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (invited review)

Koh Leng-Duei, Yeo Jingjie, Lee Yeong Yuh, Ong Qunya, Han Mingyong, Benjamin Tee Chee-Keong

PII:
DOI:
Reference:
To appear in:
Received date:
Revised date:
Accepted date:

S0928-4931(17)31214-6
https://doi.org/10.1016/j.msec.2018.01.007
MSC 8389
Materials Science \& Engineering C
30 June 2017
25 August 2017
28 January 2018

Please cite this article as: Koh Leng-Duei, Yeo Jingjie, Lee Yeong Yuh, Ong Qunya, Han Mingyong, Benjamin Tee Chee-Keong, Advancing the frontiers of silk fibroin proteinbased materials for futuristic electronics and clinical wound-healing (invited review). The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. $\operatorname{Msc}(2017)$, https://doi.org/10.1016/j.msec.2018.01.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Advancing the Frontiers of Silk Fibroin Protein-based Materials for Futuristic Electronics and Clinical Wound-Healing (Invited Review)

Koh Leng-Duei ${ }^{\text {a, } \dagger}$, Yeo Jingjie ${ }^{\text {b, }, ~ * ~ * ~ L e e ~ Y e o n g ~ Y u h ~}{ }^{\text {a, * }}$, Ong Qunya ${ }^{\text {a, * }}$, Han Mingyong ${ }^{\text {a }}$, Benjamin Tee Chee-Keong ${ }^{\text {a, d, e, f, } \dagger}$
${ }^{a}$ Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
${ }^{\mathrm{b}}$ Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Connexis, Singapore 138632, Singapore
${ }^{\text {c }}$ Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
${ }^{d}$ Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
${ }^{e}$ Department of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
${ }^{\dagger}$ Biomedical Institute for Global Health Research and Education (BIGHEART), National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore

* These authors contributed equally to this paper.
\dagger Corresponding authors.
Tel.: + 6563194769 (L.D. Koh), + 6563194896 (B. C.-K. Tee).
E-mail addresses: kohld@imre.a-star.edu.sg (L.D. Koh), benjamin-tee@imre.a-star.edu.sg (B. C.-K. Tee).

Abstract

The present review will introduce the basic concepts of silk-based electronics/optoelectronics including the latest technological advances on the use of silk in combination with other functional components, with an emphasis on improving the performance of next-generation silk-based materials. It also highlights the patterning of silk fibroin to produce micro/nano-scale features, as well as the functionalization of silk fibroin to impart antimicrobial (i.e. antibacterial) properties. Silk-based bioelectronics have great potential for advanced or futuristic bio-applications including e-skins, ebandages, biosensors, wearable displays, implantable devices, artificial muscles, etc. Notably, silkbased organic field-effect transistors have highly promising applications in e-skins and biosensors; silk-based electrodes/antennas are used for in vivo bioanalysis or sensing purpose (e.g.,

https://daneshyari.com/en/article/7866471

Download Persian Version:

https://daneshyari.com/article/7866471

Daneshyari.com

