

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/ijrefrig

A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: A transient performance study

Ning Zhang a, Li-Zhi Zhang a,b,*, Jian-Chang Xu a

- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of
 Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
 State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
- ARTICLE INFO

Article history:
Received 3 July 2015
Received in revised form 29
December 2015
Accepted 1 January 2016
Available online 1 April 2016

Keywords:
Heat pump
Hollow fiber membrane
Liquid desiccant
Air dehumidification system
Transient performance

ABSTRACT

Heat pump driven and hollow fiber membrane based liquid desiccant systems have been adopted for air dehumidification because of their capabilities to prevent liquid desiccant droplets from crossing over into the process air and to achieve high energy efficiencies. Due to the transient operating conditions like load and weather conditions, a transient model for the novel system is proposed in this study. Based on experiments and model simulations, the transient behaviors of the system are analyzed both at the start-up and in the normal operation periods. It is found that the initial concentration of the liquid desiccant and the volume of solution stored in the container play key roles at the start-up period, while the initial temperature has less influences. Adjusting the compressor speed is a feasible way to track the load and weather fluctuations. The model developed in this work is necessary for the control and optimization of the air dehumidification technology.

© 2016 Elsevier Ltd and IIR. All rights reserved.

Système de déshumidification d'air à déshydratant liquide entrainé par une pompe à chaleur et à base de membrane en fibre creuse: Une étude de performance transitoire

Mots clés : Pompe à chaleur ; Membrane en fibre creuse ; Déshydratant liquide ; Système de déshumidification d'air ; Performance transitoire

^{*} Corresponding author. Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. Tel.: +86 20 87114264; Fax: +86 20 87114264. E-mail address: lzzhang@scut.edu.cn (L.-Z. Zhang).

А	Nomenclature		relative humidity
	area [m²]	ω	humidity ratio [kg kg ⁻¹]
С	specific heat [kJ kg ⁻¹ K ⁻¹]		
Cp	specific heat at constant pressure [kJ kg ⁻¹ K ⁻¹]	Subscripts	
CMI	capacity matching index	a	air
COP	coefficient of performance of the system	ac	auxiliary solution cooler
d	diameter [m]	com	compressor
EER	energy efficiency ratio of heat pump	con	continuity
h	heat transfer coefficient [kW m ⁻² K ⁻¹]	cond	condenser
	refrigerant side convective heat transfer	cool	cooling
h _r	coefficient [kW m ⁻² K ⁻¹]	deh	dehumidifier
1.	solution side convective heat transfer	end	end
hs		eva	evaporator
	coefficient [kW m ⁻² K ⁻¹]	fan	fan
H	specific enthalpy [kJkg ⁻¹]	heat	heating
k	mass transfer coefficient [ms ⁻¹]	i	inlet, inside
1	length [m]	Lat	latent heat
m	mass flow rate [kg s ⁻¹]	load	load
M	mass [kg]	0	outlet, outside
n	compressor revolving speed [rpm]	pump	pump
NTU	number of heat transfer units	output	output
p	pressure [Pa]	pb	pool boiling
P	perimeter [m]	r	refrigerant
Q	heat transfer capacity [kW]	reg	regenerator
r	latent heat of phase change [kJ kg ⁻¹]	S	solution
SDP	specific dehumidification power [gh ⁻¹ m ⁻²]	sc	solution container, sub-cool
t	time [minute]	se	solution heat exchanger
T	temperature [°C]	sen	sensible heat
V	volumetric flow rate [m³ s ⁻¹], volume [m³]	sh	super heat
W	power consumption [kw]	su	start-up
x, y, z	spatial coordinates [m]		•
x_0	width of dehumidifier [m]	st	state total
X	solution concentration [kg kg ⁻¹]	tot	
y _o	length of dehumidifier [m]	tp	two-phase
Z_0	height of dehumidifier [m]	W	wall, water
∆t	time step [minute]		
		Superscript	
Greek letters		*	dimensionless
η	dehumidification efficiency	0	initial
λ	thermal conductivity [kJ K ⁻¹]	i	number
ρ	density [kg m ⁻³]		

1. Introduction

Air dehumidification is a major task for air conditioning industry, especially in hot and humid climates like South China, where moisture load accounts for 20–40% of the total load for air conditioning (Zhang, 2012a). Of the various air dehumidification technologies, liquid desiccant air dehumidification becomes a promising choice because of its high dehumidification potential, capability of waste heat reclamation, and the ability to realize energy storage. Thus, extensive researches have been conducted in this direction (Audah et al., 2011; Mei and Dai, 2008; Moghaddam et al., 2014; Xiong et al., 2010; Zhang, 2012a).

The shortcoming of liquid desiccant is that it is corrosive. The traditional way of moisture removal by a direct contact of process air with liquid solution in a packed bed is problematic

because some liquid droplets may cross over into the process air. The polluted air stream is harmful to the occupants, similar to the effect of salt fog. To solve this problem, in recent years, a new technology, the so-called membrane-based liquid desiccant air dehumidification was proposed (Huang et al., 2012; Zhang et al., 2012; Zhang and Yang, 2012). In this technology, the process air and the liquid desiccant are separated from each other by the semi-permeable membranes. A bundle of hollow fiber membranes is packed in a shell to form a shell-and-tube heat exchanger-like contactor, as shown in Fig. 1. Liquid desiccant flows in tube side, and process air flows in shell side across the fibers arranged in a cross-flow (Zhang, 2012b). The water vapor can permeate through the membranes but liquid solution and other gases are prohibited from crossing-over. A heat pump is used in the system to cool and heat the desiccant solution for dehumidification and regeneration respectively (Zhang

Download English Version:

https://daneshyari.com/en/article/786675

Download Persian Version:

https://daneshyari.com/article/786675

<u>Daneshyari.com</u>