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a b s t r a c t

One of the main targets in the development of dislocation based continuum crystal plastic-
ity theories is to establish continuum constitutive relations which approximately summa-
rize the underlying discrete dislocation dynamics (DDD). However, rigorously transiting
from discrete to continuum in describing the evolution of dislocation system is extremely
challenging for complex networks of curved dislocations and their interactions at multiple
length scales. To address this difficulty, a coarse-grained disregistry function (CGDF) was
proposed to represent the continuous distributions of curved dislocations. In this paper,
we present a dislocation based continuum model for crystal plasticity incorporating the
Frank–Read sources, which serves as a crucial step towards systematically building a
three-dimensional dislocation based continuum plasticity theory. The continuum model
is derived accurately from the DDD model, and is validated by comparisons of the results
with theoretical predictions and DDD simulations conducted under the same conditions.
Furthermore by considering dislocation loop pileups within a rectangular grain, we derive
analytical formulas which generalize the traditional Hall–Petch relation into two dimen-
sions without any adjustable parameters. It is shown that the yield stress of a rectangular
grain depends not only on the grain size, but also on the grain aspect ratio whose exact
form is associated with the harmonic mean of the length and width of the rectangle. The
derived formulas of the yield stress are shown in excellent agreement with the results
by our continuum model and DDD simulations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Developing dislocation based plasticity theories has been an active research area along with the development of disloca-
tion theory, and is quite challenging due to the multiscale nature resulting from the discreteness and inhomogeneity of dis-
tributions and dynamics of dislocations (Hirth and Lothe, 1982; Argon, 2008). A large number of models proposed to
understand the elastic–plastic behaviors of crystals are under the framework of continuum mechanics. In the classical con-
tinuum plasticity theories, the deformation process is described based on the (multiplicative) decomposition of the total
deformation gradient into an elastic part and an inelastic part, while the microstructural changes are implicitly described
by the evolution equations of a set of internal state variables. These phenomenological theories lack the ability to include
some important effects such as the size-dependent effect, which has been observed experimentally and are believed to be
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crucial in materials designed for the needs arising in advanced applications. Although improvements have been proposed
such as the gradient plasticity theories to describe the size-dependent effect (e.g. Fleck and Solids, 1993; Nix and Gao,
1998; Gurtin, 2002; Svendsen, 2002; Aifantis and Ngan, 2007; Counts et al., 2008; Polizzotto, 2009), these models do not
incorporate much information of the underlying dislocation mechanisms that govern the plastic deformation process.

The discrete dislocation plasticity theories, on the other hand, focus on the dynamics of individual dislocations, which are
considered as line singularities embedded into an elastic medium. Theories in this group are generally based on the discrete
dislocation dynamics (DDD) simulations where the evolving dislocations are represented by a set of transporting line seg-
ments. The long-range elastic interaction between dislocation segments can then be numerically calculated by using the
Peach–Koehler force formula, and nonlinear short-range interactions are included by assigning respective rules for micro-
mechanisms such as dislocation annihilation, reaction, glide, climb, and cross-slip (e.g. Kubin et al., 1992; Moulin et al.,
1997; Zbib et al., 1998; Fivel et al., 1998; Faradjian et al., 1999; Ghoniem et al., 2000; Gómez-García et al., 2000; von
Blanckenhagen et al., 2001; Weygand et al., 2002; Xiang et al., 2003; Han et al., 2003; Benzerga et al., 2004; Xiang and
Srolovitz, 2006; Arsenlis et al., 2007; Benzerga, 2008; Shishvan et al., 2008; Mordehai et al., 2008; Gao et al., 2011; Zhao
et al., 2012; Fitzgerald et al., 2012; Zhou and LeSar, 2012; Keralavarma et al., 2012; Zhu et al., 2013; Chu et al., 2013;
Huang et al., 2014). Although DDD simulations serve to reflect the underlying physics on the length scale of dislocation net-
works during plastic straining, their applications are still confined to materials of small size, due to heavy computational
intensities.

Therefore, theories with a good trade-off between resolution (i.e. microstructural information is properly accounted for)
and efficiency (being applicable to crystals of size larger than the order of 10 lm) across multiple length and time scales are
still highly expected in the study of crystal plasticity. One way to address this purpose is to explore the dislocation-based
continuum plasticity theory, that is, to study the evolution of dislocation systems at the continuum level (roughly about
1 lm to 100 lm). One of the main targets in such theories is to establish continuum constitutive relations which approxi-
mately summarize the underlying discrete dislocation dynamics. Such constitutive relations include appropriate descrip-
tions for the long-range and short range dislocation–dislocation interactions, the plastic flow induced by dislocation
motion, multiplication, annihilation, etc. For the simplest case, the collective behaviors of system of straight parallel dislo-
cations have been studied relatively well (e.g. Groma et al., 2003; Voskoboinikov et al., 2007; Kochmann and Le, 2008; Liu
et al., 2011; Oztop et al., 2013; Geers et al., 2013; Zhu and Chapman, 2014). There are also continuum dislocation based plas-
ticity models in which a scalar dislocation density is employed for each slip system without considering the orientations of
dislocations (e.g. Krasnikov et al., 2011; Basirat et al., 2012; Engels et al., 2012; Babu and Lindgren, 2013; Li et al., 2014).
Some multiscale models that couple DDD simulations with continuum models have been proposed (Zbib and de la Rubia,
2002; Liu et al., 2009). The development in systematically building three-dimensional dislocation based continuum theories,
however, is still far from satisfactory despite a number of valuable works (e.g. Nye, 1953; Kröner, 1963; Kosevich, 1979;
El-Azab, 2000; Acharya, 2001; Arsenlis and Solids, 2002; Sedláček et al., 2003; Sandfeld et al., 2011; Mayeur and
McDowell, 2014; Cheng et al., 2014). The main difficulty in establishing such continuum theories lies in the fact that the
complex geometries of curved dislocation ensembles and the associated multiscale interactions make it extremely challeng-
ing to rigorously summarize for explicit laws consistent with what takes place on the DDD scales.

To overcome this difficulty, the idea of the coarse-grained disregistry function (CGDF) was proposed by Xiang (2009). The
exact disregistry functions were used in the Peierls–Nabarro models (Peierls, 1940; Nabarro, 1947; Xu and Argon, 2000;
Xiang et al., 2008) to describe the distribution of the Burgers vectors of dislocations in their slip planes, and take the profile
of a regularized jump with height of a Burgers vector representing the dislocation core when passing through a dislocation.
The CGDF is to approximate the exact disregistry function by a smoothly varying profile without resolving details of the
dislocation cores, so that each contour of CGDF with integer value of b – the magnitude of the Burgers vector – describes
a dislocation curve. This smooth CGDF is then employed to represent continuous distribution of dislocation ensembles.
Advantages in adopting such a way of representation are straightforward: (1) The geometric information of dislocation
microstructures necessary for continuum models, such as the dislocation line direction and curvature, are contained in
the CGDF and its spatial derivatives; (2) the Nye dislocation density tensor (Nye, 1953; Kröner, 1963) can be reproduced
in terms of the CGDF; and (3) the total plastic strain is associated with the integral of this CGDF over the slip plane.

Based on the CGDFs, a continuum model for the Peach–Koehler force on dislocations in a slip plane was derived from the
DDD model by asymptotic analysis (Xiang, 2009). The continuum Peach–Koehler force contains both the long-range force
and an accurate form of the local force due to the line tension effect of dislocations. It is essential to include the dislocation
line tension force accurately in a continuum plasticity theory because it plays crucial roles in many important dislocation
processes such as particle strengthening (Orowan, 1948; Friedel, 1956; Argon, 2008). The plastic flow induced by dislocation
motion is governed by evolution equations of the CGDFs (Zhu and Xiang, 2010). Such representation of continuous distribu-
tions of dislocations by the CGDFs and the accurate continuum Peach–Koehler force provide a basis for further developing a
continuum model incorporating the Frank–Read source (Frank and Read, 1950; Hirth and Lothe, 1982), which is one of the
major mechanisms for dislocation multiplication in plastic deformation and in which dislocation line tension effect also
plays crucial role. This is one objective of this paper.

When a Frank–Read source is activated, a dislocation segment pinned at both ends bows out in response to the applied
shear stress, resulting in a series of dislocation loops. The classical theory of the Frank–Read source is based on the line ten-
sion approximation of dislocations and the critical stress is determined when the bowing-out dislocation segment has the
shape of a half circle (Frank and Read, 1950). Foreman (1967) obtained the critical stress and shape of the Frank–Read source
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