Accepted Manuscript

Fabrication and characterization of SrAl $_2$ O $_4$: Eu 2 + Dy 3 +/CS-PCL electrospun nanocomposite scaffold for retinal tissue regeneration

Azadeh Sepahvandi, Mahnaz Eskandari, Fathollah Moztarzadeh

PII: S0928-4931(16)30203-X

DOI: doi: 10.1016/j.msec.2016.03.028

Reference: MSC 6292

To appear in: *Materials Science & Engineering C*

Received date: 19 December 2015 Revised date: 21 February 2016 Accepted date: 10 March 2016

Please cite this article as: Azadeh Sepahvandi, Mahnaz Eskandari, Fathollah Moztarzadeh, Fabrication and characterization of $SrAl_2O_4$: $Eu^2 + Dy^3 + /CS$ -PCL electrospun nanocomposite scaffold for retinal tissue regeneration, *Materials Science & Engineering C* (2016), doi: 10.1016/j.msec.2016.03.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication and characterization of SrAl₂O₄: Eu²⁺Dy³⁺ /CS-PCL Electrospun Nanocomposite Scaffold for Retinal Tissue Regeneration

Azadeh Sepahvandi¹, Mahnaz Eskandari^{1*}, Fathollah Moztarzadeh¹

1. Department of Biomedical Engineering Amirkabir University of Technology (AUT) Tehran, Iran

* Corresponding author Email: eskandarim@aut.ac.ir

Tel: +98-9128248252

Address: No 424, Hafez St, Tehran, Iran

Abstract

Millions of people around the world become blind due to loosing a part of the retina cells. In tissue engineering field one way to address this issue is to develop a retina tissue by scaffolds based on structure and signals received These scaffolds can play an essential role in repair and reformation of the damaged retina tissue. Here, SrAl₂O₄: Eu²⁺, Dy³⁺ nanophosphor were prepared by sol-gel method and then coated with PEG to become biocompatible. Next 10%, 30% and 50% concentration of the coated nanophosphors were dispersed in CS-PCL copolymer and electrospuned to form SrAl₂O₄: Eu²⁺, Dy³⁺ / CS-PCL scaffolds. The aforementioned photo –luminescence-scaffolds were studied for their optical, mechanical and morphological characteristics . finally the effect of these scaffolds on the mice RPCs cells' proliferation and differentiation was observed. The 30% nanophosphor dispersion scaffold while providing adequate mechanical flexibility and integrity, and exhibiting superior proliferation rates and acceptable differentiation into retinal neural cells (particularly photo receptors retinal) is suggested as a promising choice in retinal tissue repair.

Keywords:

Retina; Photoluminescence; Electrospinning; Scaffold; nanophosphor

1. Introduction

Retina is one of well-developed structures within cell-bodies and synapses, characterized in distinct layers [1]. Degenerative retinal diseases such as retinitis pigmentosa or age-related macular [2] affect millions of people and if left untreated would lead to irreversible blindness [3]. Mending degenerative retinal diseases, Exhaustive research has been conducted and various treatment approaches proposed. Among these, retinal tissue engineering introduces versatile treatment options. Retinal implant is of the most recent approaches which restores useful vision for limited visual abilities by stimulating the surviving retinal nerve cells. It is

Download English Version:

https://daneshyari.com/en/article/7867281

Download Persian Version:

https://daneshyari.com/article/7867281

<u>Daneshyari.com</u>