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a b s t r a c t

The atomistic-based consistent finite hyperelastic–plastic constitutive (LH) model for mul-
tiscale simulation is proposed. The system Helmholtz energy is constructed from an
embedded-atom method (EAM) potential with uniformly deformation assumption, which
consists two parts: the volumetric part and the deviatoric part. A lattice structure related
upscaling strategy is introduced to split the total energy. The volumetric strain energy is
used to determine the elastic responses, while the deviatoric strain energy governs the
plastic evolution. Based on the maximum plastic dissipation principle and the deviatoric
strain energy, we derive the general form of atomistic-based plastic flow rule, which lays
the theoretical foundation to build LH model. The evolution equation can be explicitly
expressed by the kinematic variables of multiplicative decomposition, which directly
relates the flow rule to basic physical processes that induce plasticity such as dislocation
multiplications. The isotropic hardening parameters in von Mises yield function are fitted
by plastic flow stresses. The integration algorithm of standard finite strain plasticity is
developed for LH model. In case of zero deviatoric strain energy, LH model reduces to
the classical elastic Cauchy-born (CB) model. Full atomistic simulation of dynamic crack
propagation is carried out to validate this model. Plasticity captured by LH model, instead
of the elasticity obtained from CB model, is observed after lattice instability, which implies
that the ductile fracture can be governed by the collective behaviors of dislocations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently atomistic-to-continuum coupling multiscale methods have been widely used to study material response at nm–
lm length scales. The construction of atomistic consistent and predictive constitutive model remains a long-term challenge
for the application of these methods. In the hyperelastic Cauchy-Born (CB) model (Ericksen, 1984), the volume element
deforms uniformly as the underlying lattice, hence the macroscopic strain energy can be calculated from the atomistic
potential energy. CB model is considered to be consistent with atomistic potential force field, and has been applied to most
existing multiscale methods, such as quasicontinuum method (Tadmor et al., 1996), finite temperature quasicontinuum
method (Dupuy et al., 2005), bridging scale method (BSM) (Wagner and Liu, 2003), CGMD (Rudd and Broughton, 1998),
as well as the interatomic potential finite element method and the lattice dynamical finite element method (Zhong and
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Zhu, 2008; Liu et al., 2010). CB model proved to be accurate under static loading conditions, or before the incipient of lattice
instability. However, the nucleation and multiplication of dislocations that triggered by the activation of slip, which even-
tually leads to the onset of plasticity (Cheung and Yip, 1994; Abraham et al., 2002; Buehler et al., 2003; Buehler et al.,
2004), cannot be described by the elastic CB model.

Fundamentals of dislocation induced plasticity are extensively explored based on multiplicative decomposition in Rice
(1971), Simo and Ortiz (1985), Moran et al. (1990), Hartley (2003), McDowell (2010) and Clayton et al. (2014). The two-term
multiplicative decomposition for elastic–plastic crystals is first formulated by Bilby et al. (1957), in which the total deforma-
tion gradient is decomposed into the elastic component and the plastic component. The elastic component is caused by
stretching and rotation of the crystal lattice (volumetric). Plastic component results from dislocation motions and is defined
as lattice-preserving or lattice invariant, since dislocation glide is volume-preserving (Clayton, 2011). The three-term decom-
position is proposed for elastoplasticity of polycrystals in Clayton and McDowell (2003), and Clayton et al. (2014) reveals
that the third term, e.g., the local component of lattice deformation, is significant in cases of large defect densities. Based
on the concurrent atomistic continuum (CAC) methodology, key phenomena of dislocation dynamics, including dislocation
migration and formation of intrinsic stacking faults, can be captured by the coarse-grained atomistic simulations in Xiong
et al. (2012). For thermally-activated dislocation motion and generation, Bammann and Solanki (2010) presents a new con-
sistent polycrystalline elastoplasticity model, which coupling kinematics and thermodynamics with damage. Moreover,
Homayonifar and Mosler (2011) and Homayonifar and Mosler (2012) demonstrates the dislocation slip and microstructure
evolution in magnesium by crystal plasticity theory.

Successful implementations of multiplicative decomposition have also been witnessed in finite hyperelastic–plastic con-
stitutive models. The associative flow rule can be deduced with the maximum plastic dissipation principle (Hill, 1983), and
Simo (1988) generalized it to the hyperelastic framework. In the newly developed finite strain kinematic hardening consti-
tutive models, the plastic evolution is derived from the generalized normality rule (Badreddine et al., 2010), or the structure
tensors (Vladimirov et al., 2010). Temperature effects are coupled in the plastic evolution by Ghavam and Naghdabadi
(2011), in which the flow stress is dependent on the temperature and strain rate, and thermally activated damage is incor-
porated to account for the physical mechanisms of failure by Vignjevic et al. (2012). Combining the isotropic Helmholtz
strain energy and irreversible thermodynamics, the phenomenological constitutive models have been developed for shape
memory alloys (Arghavani et al., 2010; Arghavania et al., 2011).

However, to construct an atomistic-to-continuum coupling multiscale constitutive model, three conditions are necessary.
First, consists with the underlying lattice. Second, plasticity is reasonably described and easily apply to the existing macro
solvers of multiscale methods. Finally, includes dislocation effects. To some extent, it is the plastic extending of CB model.
Moreover, the associative flow rule should be deduced from the interatomic potential energy in hyperelastic framework with
multiplicative decomposition.

An atomistic-based finite hyperelastic–plastic (lattice hyperelastic, LH) constitutive model is built for studying dynamic
ductile fractures in this manuscript. It also suggests a new way to construct macro–micro consistent hyperelastic–plastic
constitutive equations, which is a bottleneck in the development of atomistic-to-continuum multiscale methods. The basic
ideas are: (1) Energy splitting. The system Helmholtz energy that constructed from an EAM potential with uniformly defor-
mation assumption consists two parts: the volumetric part and the deviatoric part. A lattice structure related upscaling strat-
egy is introduced to split the total energy. The volumetric part is supposed to be stored in the elastic deformation, and is
determined by the upscaled elastic Green’s strain tensor and the underlying lattice structure. The deviatoric part is the out-
come of atomic bonds breaking and dislocation motions. (2) Plastic evolution. The associative plastic flow is derived based on
the deviatoric strain energy and the principle of maximum plastic dissipation. With the kinematic relationships of the devi-
atoric functional, the proof of the atomistic-based plastic flow rule is provided for general Helmholtz energy, which is the
theoretical foundation for building LH model. The evolution equation can be explicitly expressed by the kinematic variables
of multiplicative decomposition. Plasticity of the volume elements is viewed as the consequence of multiplication of glide
dislocations, without tracking each individual dislocations or grains. Related integration algorithm is developed, and mate-
rial frame indifference is ensured by using tensorial transformations (Simo and Hughes, 1998). (3) Yield function. Von Mises
yield condition with isotropic hardening function is adopted in the plastic evolution computation. Yield strength and hard-
ening moduli of yield function are fitted by the flow stresses in crystal plasticity, since empirical formula for this scale is
unavailable. By this way the effects of dislocations are embedded into von Mises yield function for LH model. If there is
no plastic flux, e.g., the deviatoric part of the potential energy is zero, LH model will acquire the same result as that of
the CB model. At last, numerical experiments of crack propagation are carried out to validate LH model, by comparing with
CB model and full atomistic simulations. The effects of dislocation interactions, e.g., atomic plasticity (Buehler et al., 2004),
can be observed from LH model before fracture.

The paper is organized as follows: the hyperelastic–plastic LH model is proposed in Section 2, including the governing
equation, multiplicative decomposition with energy splitting and derivation of associative flow rule. Numerical aspects
are presented in Section 3, consists local integration algorithm, yield model and finite element method. Simulation
results and discussions are presented in Section 4, and Section 5 summaries this paper with concluding remarks. The
proof of lemma in Section 2 is provided in Appendix A. The methods for computing deviatoric strain energy are intro-
duced in Appendix B.
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