EI SEVIER

Contents lists available at ScienceDirect

Materials Science and Engineering C

journal homepage: www.elsevier.com/locate/msec

Effect of anodization on the surface characteristics and electrochemical behaviour of zirconium in artificial saliva

Daniela E. Romonti ^a, Andrea V. Gomez Sanchez ^b, Ingrid Milošev ^c, Ioana Demetrescu ^a, Silvia Ceré ^{b,*}

- ^a Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, 1-7 Polizu, district 1, Bucharest Ro-011061, Romania
- ^b INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo, 4302, B7608FDQ Mar del Plata, Argentina
- ^c Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana, Slovenia

ARTICLE INFO

Article history: Received 17 September 2015 Received in revised form 11 January 2016 Accepted 27 January 2016 Available online 30 January 2016

Keywords: Anodized zirconium Fluoride XPS Corrosion resistance

ABSTRACT

The paper is focused on elaboration of ZrO₂ films on pure zirconium *via* anodizing in phosphoric acid with and without fluoride at constant potentials of 30 V and 60 V. The structure and composition of the films were investigated using scanning electronic microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The composition of the oxides formed at both potentials can be identified as monoclinic ZrO₂. In addition to Zr and O, the layers formed in phosphoric acid contain phosphorus originating from the phosphoric acid. When the phosphoric acid solution contains NaF, fluorine is also incorporated into the oxide layer. The oxides formed at a higher voltage have greater roughness than those formed at 30 V. Anodized samples exhibit smaller current densities during anodic polarization compared to the as-received zirconium covered with *native* oxide.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The surface characterization of materials employed in orthopaedic surgery is a topic of great importance because the surface plays a key role in the interaction between the metal and the host tissue. Surface modification induced by anodization under the conditions presented in this work corresponds to a surface design criterion based on the modification of the chemical and topological features in the micrometric range with the aim of promoting the osseointegration of the zirconium as a permanent implant.

Zirconium is, as a valve metal, very stable in numerous aggressive media and has been extensively used in the nuclear industry owing to its low neutron absorption and in the microelectronic industry [1,2] due to its high dielectric constant. More recently, Zr was investigated for biomedical applications [3–5]. It is biocompatible and has a lower ion release than Ti in bioenvironments due to its native passive oxide, which acts as a protective layer, according to the results obtained in Hanks' physiological solution [6]. Despite the fact that self-passivation is an easy and practical solution for biomaterials used for permanent implants, it does not provide any possibility for the further functionalization of the surface. Modifying the surface *via* anodization in phosphoric acid media seems to be a convenient way to stimulate bone formation [7]. Furthermore, it was reported that Zr-containing Ti alloys are nontoxic,

non-allergenic and have good mechanical properties, even more suitable for bioapplications than TiAlV [8–12]. In line with this approach, new ternary and binary alloys with titanium have been investigated (TiAlZr and TiZr with various Zr contents), elaborating a large variety of micro- and nanostructured TiO₂ and ZrO₂ oxides at voltages between 15 and 45 V in hybrid electrolytes [9–12]. Zirconium and titanium oxides can be tailored by controlling the anodization conditions, having structures from porous amorphous to crystalline layers. Their stability in bioenvironments and antibacterial properties can be correlated with their structure, denoting the relation between structure, properties and applications [13]. In a recent work, an atomic force microscopy (AFM) study of ZrO₂ fabricated in 0.1 mol/L ammonium oxalate at potentials between 0 V and 79 V showed a continuous decrease in roughness with the decreasing anodic potential [14].

In this manuscript, the electrochemical *in vitro* response of anodized zirconium was systematically studied to produce different surface topographies and to determine the effect of the surface modification process on the corrosion resistance of this metal. Although there have been many papers published about Ti and its alloys and Zr as an alloying element, the available literature on pure Zr is scarce, and, according to our knowledge, no reports in Afnor artificial saliva can be found [5–7,11,12,15–17]. This study presents the development of Zr oxides by anodization in phosphoric acid with and without the addition of fluoride ions for potential dental applications. F⁻ ions are known as strong modifiers of the structure of anodic oxides that may lead to structures from nanopores and nanotubes to microporosity depending on the anodic conditions [13,18,19].

^{*} Corresponding author. E-mail address: smcere@fi.mdp.edu.ar (S. Ceré).

2. Experimental

2.1. Sample preparation and anodizing process

Flat samples of zirconium of 99.8% purity (Alfa Aesar) were cut into dimensions of $20 \text{ mm} \times 15 \text{ mm} \times 0.127 \text{ mm}$. The electrodes were anodized for 60 min in either $1 \text{ mol/L H}_3\text{PO}_4$ or a mixture of $1 \text{ mol/L H}_3\text{PO}_4$ and 0.15% w/v NaF using an electrophoresis power supply (Consort EV 231, Belgium). Before the anodization process, all of the samples were wet polished with 600 grit SiC paper, cleaned in ethylic alcohol for 10 min, washed with deionized water and dried at room temperature. Anodization was carried out in a two-electrode cell with the zirconium sample as the working electrode and a stainless steel mesh as the counter electrode, as described elsewhere [4].

The anodized samples were denoted as shown in Table 1.

2.2. Characterization of anodized samples

2.2.1. Surface characterization

The morphology and chemical composition of the oxide layers were studied by means of a scanning electron microscope (SEM, Quanta Inspect f, USA) equipped with an electron gun with field emission (FEG, field emission gun) and an energy dispersive X-ray spectrometer (EDS) with a resolution of 133 eV at Mn K.

X-ray photoelectron spectroscopy (XPS) was performed with a TFA Physical Electronics, Inc. spectrometer using non- and monochromatized Al K_{α} radiation (1486.6 eV) and a hemispherical analyser. The mono-chromatized radiation used for the high-resolution spectra yields a resolution of 0.6 eV, as measured on an Ag 3d_{5/2} peak. These spectra were used to differentiate between various species, while those obtained using non-monochromatized radiation were used to quantify the chemical composition. The take-off angle used, defined as the angle of emission relative to the surface, was 45°. The energy resolution was 0.5 eV. Survey scan spectra were recorded at a pass energy of 187.9 eV, and individual high-resolution spectra at a pass energy of 23.5 eV with an energy step of 0.1 eV. The diameter of the analysed spot was 400 μm. The values of the binding energies were aligned to the carbon peak C 1s at 284.8 eV. After taking the surface spectra, the depth profiling of the oxidized layers was performed. An Ar⁺ ion beam, with an energy level of 3 keV and a raster of 3 mm × 3 mm (sputter rate 0.67 nm/min determined on a Ni/Cr multilayer standard), was used for sputtering.

The crystalline domains present in the anodic oxides were determined by Raman spectroscopy using an Invia Reflex confocal Raman microscope (Renishaw, UK). The Raman spectra were obtained using a 514 nm argon laser with a $50 \times$ objective lens. No thermal effects were observed on the samples during these measurements.

The topography of the anodized samples was analysed using an A100-SGS atomic force microscope (AFM) (A.P.E. Research Italy). AFM measurements were performed in contact mode. The calculated roughness values are basically the arithmetic average of the absolute values of the highest and lowest points of the samples, also taking in consideration the slopes of the surface (so it does not necessarily mean that the sample with the greatest height also has the highest roughness value). Roughness values were calculated after creating a baseline and levelling the image with the minimum amount of image preparation, as data may be lost during the processing.

Table 1Denotation of the zirconium samples according to the conditions of the anodization process.

Sample denotation	Anodization condition
60P 30P 60PF	60 V in phosphoric acid (1 mol/L) 30 V in phosphoric acid (1 mol/L) 60 V in phosphoric acid (1 mol/L) + sodium fluoride (0.15% w/v)
30PF	30 V in phosphoric acid (1 mol/L) + sodium fluoride (0.13% w/V) 30 V in phosphoric acid (1 mol/L) + sodium fluoride (0.15% w/V)

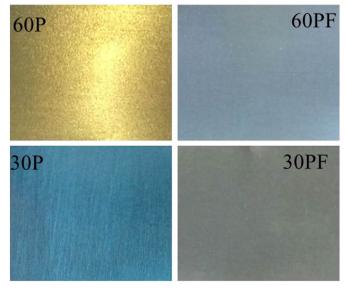
Table 2Chemical composition of artificial saliva Afnor.

Compound	NaCl	KCl	Na ₂ HPO ₄	NaHCO ₃	KSCN	CH ₄ ON ₂ (Urea)
Concentration (g/L)	0.7	1.2	0.26	1.5	0.33	1.3

2.2.2. Electrochemical characterization

After the anodizing process, the samples were electrochemically tested in Afnor artificial saliva (Table 2) [20]. All reagents were supplied by Sigma-Aldrich (analytical grade). Deionized water (18.2 M Ω cm, Millipore) was used throughout. Electrochemical tests were performed using a conventional three-electrode cell with a saturated calomel electrode (SCE, Radiometer Analytical, France) as reference and a platinum wire as counter electrode. Before each measurement, the potential was left to stabilize for 40 min at open circuit. Potentiodynamic polarization curves were measured from the open circuit potential to 1.0 V and backwards at a sweep rate of 0.002 V/s. Electrochemical impedance spectroscopy (EIS) measurements were carried out with an amplitude of the perturbation signal of 10 mV rms, and the impedance was measured between 10^{-2} and 10^{6} Hz. The impedance data were fitted to equivalent circuit models with Zplot for Windows software [21]. Electrochemical measurements were taken at 37 °C using a Vicking 4100 (Vicking Argentine) thermostatic bath.

3. Results and discussion


3.1. Anodization process

After the anodization process, the zirconium samples acquired different colours (Fig. 1). The obtained colours include the same shades as in previously reported data [4].

3.2. Surface characterization: morphology and elemental analysis

The morphology and the chemical composition of the samples were studied by SEM/EDS analysis. SEM images of anodized zirconium samples recorded at different magnifications are presented in Fig. 2.

The oxide layers formed for samples 60P and 30P present discontinuities distributed on the surface. Porosity is also observed for the 30PF and 60PF samples, together with a smoother surface. Although some authors found a nanotubular structure in anodic films formed in F-containing [18] aqueous electrolyte solutions, nanotubes were not

Fig. 1. Colour samples after anodization process in phosphoric acid (left) and in phosphoric acid and sodium fluoride (right).

Download English Version:

https://daneshyari.com/en/article/7867860

Download Persian Version:

https://daneshyari.com/article/7867860

<u>Daneshyari.com</u>