

Transient modeling of a flash tank vapor injection heat pump system — Part I: Model development

Hongtao Qiao^{*}, Vikrant Aute, Reinhard Radermacher

Center for Environmental Energy Engineering, University of Maryland, College Park, 4164 Glenn L. Martin Hall Bldg., MD 20742, USA

ARTICLE INFO

Article history: Available online 19 July 2014

Keywords: Transient Modeling Vapor injection Two-phase flow Flash tank Modelica

ABSTRACT

This two-part article explores the dynamic behavior of a flash tank vapor injection heat pump system from a numerical simulation perspective. Part I provides a first-principles model describing the transient heat transfer and flow phenomena of the system with detailed modeling techniques for each component. The vapor injection scroll compressor is analyzed with the internal heat transfer between the refrigerant and metallic parts taken into account. Lumped-parameter models are developed for the flash tank and expansion devices. Heat exchangers are modeled using a finite volume approach and accounting for the complex tube circuitry. The separated flow model without interfacial exchange is utilized for two-phase flows in order to incorporate an appropriate void fraction model so that a more accurate prediction for refrigerant mass distribution can be achieved. The modular nature of the component models allows flexibility in the system configuration. Transient simulations are carried out for start-up and shut-down operations. A detailed comparison of model predictions against experimental data is presented in the companion paper.

© 2014 Elsevier Ltd and IIR. All rights reserved.

Modélisation transitoire d'un systéme de pompe à chaleur à injection de vapeur à partir d'un réservoir à vaporisation instantanée – Partie I: développement du modéle

Mots clés : Transitoire ; Modélisation ; Injection de vapeur ; Ecoulement diphasique ; Réservoir intermédiaire ; Modelica

1. Introduction

Flash tank vapor injection (FTVI) system has been gaining popularity since it was first introduced to the market in late 1970s (Umezu and Suma, 1984). Its applications have increased considerably in order to satisfy various needs, such

* Corresponding author. Tel.: +1 301 405 7314.

http://dx.doi.org/10.1016/j.ijrefrig.2014.06.019

as heating, cooling and refrigeration (Baek et al., 2008; Cho et al., 2009; Scarcella and Chen, 2010). Compared to the conventional systems without vapor injection, FTVI systems are operated under lower discharge temperatures and have higher performance in energy efficiency. Moreover, these systems are able to adjust the capacity by altering the vapor injection ratio (Winandy and Lebrun, 2002). Experimental

E-mail address: htqiao@umd.edu (H. Qiao).

^{0140-7007/© 2014} Elsevier Ltd and IIR. All rights reserved.

Nomenclature		au	time constant [s] or wall shear stress [N m ⁻¹]
		ω	humidity ratio [kg H ₂ O/kg dry air]
Symbols		ξshf	fraction of mechanical loss at the shaft [-]
a_1-a_3	curve fitting constants [-]	ζ	built-in volume ratio of the first stage [-]
А	area [m ²]	Subscrip	ots
$b_1 - b_5$	curve fitting constants [-]	a	air
c ₀ c ₃	curve fitting constants [-]	als	between ambient and compressor lower-shell
cp	specific heat [J kg ⁻¹ K ⁻¹]	amb	ambient
Cv	discharge coefficient [-]		
d	diameter [m]	aus	between ambient and compressor upper-shell
$e_{\rm sh}$	error between the measured superheat and the set	b	sensor bulb of TXV
	point [K]	С	correction
f	pressure drop coefficient [-]	comp	compression
F	spring force [N]	CS	cold stream
G	mass flux [kg m ^{-2}]	d	derivative
h	enthalpy [J kg ⁻¹]	diaph	diaphragm of TXV
$\frac{h}{h}$	mass flow weighted enthalpy [J kg ⁻¹]	dis	discharge
		disp	displacement
\overline{h}_{FT}	mass-based refrigerant mean enthalpy in flash	eo	evaporator outlet
-	tank [J kg ⁻¹]	eq	equalization
$\overline{h}_{ ho}$	density weighted enthalpy [J kg ⁻¹]	exp	expansion device
Н	height [m]	f	saturated liquid
Κ	PID gain [-]	face	frontal face
Le	Lewis number [-]	fg	liquid to gas
'n	mass flow rate [kg s ⁻¹]	fin	fin
М	mass [kg]		flash tank
n	polytropic index [-]	FT	
Ν	motor speed [min ⁻¹]	g	saturated vapor
р	pressure [N m ⁻²]	h	mass flow weighted
P	perimeter [m]	hcs	between hot stream and cold stream
q	heat transfer rate [W]	hs	hot stream
9 q″	heat flux [W m ^{-2}]	i	integral
R R	thermal resistance [K W ⁻¹]	in	inlet
t	time [s]	inj	injected flow
Т	temperature [K]	int	intermediate stage
		liq	liquid
u	velocity $[m s^{-1}]$	lo	liquid outlet
V	volume [m ³]	ls	compressor lower-shell
V	volumetric flow rate [m ³ s ⁻¹]	m	motor or mass transfer
Ŵ	power [W]	max	maximum
х	flow quality [-]	mech	mechanical
x	static quality [-]	mix	mixing
у	spring deflection [m]		nominal
Δ	difference	nom	
Δy	segment length along the direction of air flow [m]	0	external
Δz	segment length along the direction of refrigerant	offset	offset
	flow [m]	ori	orifice of TXV
		out	outlet
Greek le		р	proportional
α	heat transfer coefficient [W ${ m m^{-2}~K^{-1}}$] or mass	pin	pin of TXV
	transfer coefficient [kg s $^{-1}$ m $^{-2}$]	r	refrigerant
β	angle [degree]	rated	rating conditioning
ε	emissivity [-]	rev	reversing valve
γ	void fraction [-]	rls	between refrigerant and compressor lower-sh
η	efficiency [-]	rm	between refrigerant and compressor motor
φ	valve opening fraction [-]	rscr	between refrigerant and compressor scroll set
	spring constant [N m^{-1}]	rshf	between refrigerant and compressor scion set
к			saturation
μ	dynamic viscosity [kg m ^{-1} s ^{-1}]	sat	
ρ	density [kg m ⁻³]	scr sh	scroll set superheat
σ	Boltzmann constant [m² kg² s⁻² K⁻¹]		

Download English Version:

https://daneshyari.com/en/article/786846

Download Persian Version:

https://daneshyari.com/article/786846

Daneshyari.com