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a b s t r a c t

In the present study the Laplace transform is applied to the partial differential equations

obtained from the differential energy and absorbate balances for the combined heat and

mass transfer problem in laminar falling films with uniform film velocity.

By means of the inverse Laplace transform an analytical solution is provided for the

isothermal as well as for the adiabatic wall boundary condition. Temperature and mass

fraction profiles across the film as well as the evolution of the absorbed mass flux as a

function of the flow length are presented for the adiabatic wall condition as well as for the

isothermal wall with different wall temperatures. Furthermore, the influence of the Lewis

number on the absorbed mass flux is discussed.

In addition, the present method allows to apply other wall boundary conditions than the

isothermal or the adiabatic wall boundary, which will be addressed in a subsequent study.

© 2014 Elsevier Ltd and IIR. All rights reserved.

Solution analytique pour le transfert combin�e de chaleur et de
masse dans l'absorption de film laminaire tombant avec
vitesse de film uniforme e paroi isotherme et adiabatique
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1. Introduction

By means of the Fourier method Grigor’eva and Nakoryakov

(1977), Nakoryakov et al. (1997) and Nakoryakov and

Grigor’eva (2010) presented an analytical solution for the

combined heat and mass transfer in laminar falling film ab-

sorption with constant film velocity. Nevertheless, their so-

lution did not match the inlet conditions for small

dimensionless flow lengths x and wall temperatures, that are
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different from the film inlet temperature (Nakoryakov and

Grigor’eva, 2010). This mathematical problem originates in

the domain restrictions of the tangent function which has

been used to determine the eigenvalues by Nakoryakov and

Grigor’eva (2010). By arranging these tangent functions to

non-restricted sine and cosine functions (Meyer, 2014), more

eigenvalues are found and the improved Fourier method

matches the inlet condition for all boundary conditions even

for small flow lengths x.

However, the orthogonality relation,which has been derived

and used by Grigor’eva and Nakoryakov (1977), necessitates

either the dimensionlesswall temperature or the dimensionless

wall temperaturegradient tobezero.Thus, it is impossible touse

any otherwall boundary condition for the temperature than the

isothermal or adiabatic wall, as the orthogonality relation is

indispensable in order to apply the Fourier method.

For that reason in the present study the partial differential

equations for energy andmass fraction are solvedwithout any

restrictions for the boundary conditions by means of the

Laplace transform. However, the objective of this study is to

introduce and validate the Laplace method by applying the

isothermal and adiabatic wall only. Other boundary condi-

tions will be presented in a subsequent study. The inverse

Laplace transform presented by Baehr (1955) is applied in

order to obtain the solutions to the combined heat and mass

transfer problem in the real domain.

2. Film model

In order to illustrate the modelling assumptions, the differ-

ential absorbate and energy balance are applied to the film

flow, leading to the usual partial differential equations for

energy and mass fraction, which are the starting point for

most of the analytical solutions.

Fig. 1 depicts the model of the film flowing down an

isothermal, vertical wall for which, beside the adiabatic wall,

the combined heat and mass transfer is considered.

In Fig. 2 an arbitrary infinitesimal volume element within

the falling film is depicted and the streams marked by the

arrows and labelled with j are fluxes of any arbitrary conser-

vation quantity, e.g. mass or energy. Balancing this quantity j

for steady state conditions leads to the following equation:

0 ¼ ½jðxÞ � jðxþ dxÞ�$dydzþ ½jðyÞ � jðyþ dyÞ�$dxdz: (1)

The sign of the respective stream is determined by the di-

rection of the arrow compared to the volume element as well

as its direction compared to the direction of the coordinate. By

means of a Taylor expansion neglecting the terms of an order

n>1, it is possible to approximate the streams leaving the

element as follows:

jðxþ dxÞ ¼ jðxÞ þ vj
vx

����
x

dx; (2)

jðyþ dyÞ ¼ jðyÞ þ vj
vy

����
y

dy: (3)

Introducing (2) and (3) to (1) only the derivatives of the

conservation quantity remain:

0 ¼ �vj
vx

� vj
vy

: (4)

This is trivial for the steady state condition considered

here. Every conservation quantity entering the control volume

has to leave it, since a change in the respective quantity

Nomenclature

Dimensionless numbers

Le Lewis number (Le ¼ a D�1)eSt modified Stefan number ð eSt ¼ cs$DT$Dh�1
abs$Dc

�1Þ

Greek letters

a,b eigenvalues

D difference

d film thickness [m]

h dimensionless film thickness

g dimensionless absorbate mass fraction

l thermal conductivity [W,m�1K�1]

m dimensionless mass flux

r density [kg,m�3]

Q dimensionsless temperature

x normalized flow coordinate

Latin letters

a thermal diffusivity [m2 s�1]

A,B constants [K]

c mass fraction (absorbate) [kg kg�1]

c specific heat capacity [kJ kg�1 K�1]

D mass diffusivity [m2 s�1]

h specific enthalpy [kJ kg�1]

i imaginary unit

k index
_m mass flux [kg,m�2s�1]

p pressure [Pa]

T temperature [K]

u streamwise film velocity [m,s�1]

v transverse film velocity [m,s�1]

v specific volume [m3 kg�1]

x streamwise direction [m]

y transverse direction to film flow [m]

z complex Laplace variable

Sub-Superscripts/Symbols

0 inlet values

∞ asymptotic value for x/∞
ð Þ mean value

abs absorption

e energy

eq equilibrium (at corresponding inlet condition)

i interface

i,j,k index

m mass

mA mass fraction absorbate

s solution

W wall
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