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a b s t r a c t

Grigor’eva and Nakoryakov presented an analytical solution for combined heat and mass

transfer in laminar falling films by means of the Fourier method. The obtained solutions

exhibited mathematical instabilities for small flow length, such as oscillations in the mass

fraction profile and a mismatch of the inlet temperature. Grigor’eva and Nakoryakov

explained these instabilities with the inconsistency of the inlet and boundary conditions

and therefore an additional short term solution was introduced.

In the present study the established tangent function, that is used to determine the

eigenvalues within the Fourier method, is rearranged to a term without domain re-

strictions. Consequently, more eigenvalues are found, leading to a physical valid solu-

tion even for small flow lengths, matching the results of the short term solution

perfectly.

ª 2014 Elsevier Ltd and IIR. All rights reserved.

Amélioration des solutions analytiques exactes pour des
problèmes de transferts de chaleur et de masse combinées,
obtenues grâce à la méthode de Fourier
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1. Introduction

The combined heat and mass transfer in laminar falling film

absorption is complex. Analytical solutions to this transfer

problem with preferably realistic modeling assumptions are

useful to understand the influence of the boundary conditions

one.g. theabsorbedmassflux. In addition, analytical solutions,

which cover the whole film flow, are suitable for
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comprehensive absorption heat pump simulation with

reasonable computational effort as compared to numerical

methods.

2. State of the art

By means of the Fourier method Grigor’eva and Nakoryakov

(1977) presented the first analytical solution for combined

heat andmass transfer in laminar falling film absorption with

constant film velocity. For this solution Nakoryakov et al.

(1997) reported oscillations in the mass fraction profile for

small flow lengths. These mathematical instabilities were

explained with the inconsistency of the inlet and boundary

conditions. For that reason Nakoryakov et al. (1997) presented

an additional short term solution in order to solve the problem

for small flow lengths.

Grossman (1983) also applied the Fourier method to the

partial differential equations for temperature and mass frac-

tion. Instead of the uniform film velocity, Grossman applied a

parabolic Nusselt film velocity profile. Grossman used infinite

power series as eigenfunctions in order to solve the obtained

non-linear ordinary differential equations. Consequently, the

computational effort remarkably increases in comparison to

the uniform film velocity as the problem’s solution again

forms infinite series of eigenfunctions. Moreover, the analyt-

ical solution of Grossman only converges for moderate and

large values of the flow length and thus he needed an addi-

tional short term solution as well. Accordingly, Grossman

(1983) also applied numerical methods to obtain the mass

fraction and temperature profiles across the film for a para-

bolic film velocity profile.

The analytical models presented in literature subsequent

to the complex analytical solutions of Nakoryakov et al. (1997)

and Grossman (1983) obtained with the Fourier method were

basically focused on the simplification of the problem. How-

ever, these simplifications restrict the respective range of

validity.

Auracher et al. (2008) and Wohlfeil (2009) for instance

presented a simplified model, solving the differential equa-

tions with first type boundary conditions at the interface.

Wohlfeil (2009) assumed the temperature profile to be linear

and described the mass transfer with the semi-infinite body

model.

By means of the Laplace transform Meyer and Ziegler

(2014) applied less restricted gradient expressions to the

solving procedure of Wohlfeil (2009) and achieved only minor

deviations to the solutions of Nakoryakov et al. (1997).

In the present study the solution of Nakoryakov et al. (1997)

obtained with the Fourier method for the uniform velocity

profile is improved, extending its range of validity to thewhole

film flow.

3. Film model

Fig. 1 depicts an absorbing falling film flowing down an

isothermal, vertical wall with a constant mean film velocity u.

Based on the differential energy andmass fraction balance

for the laminar falling film with constant film velocity the

following partial differential equations are obtained, allowing

diffusive transport in transversal y and convective transport

in streamwise direction x only.

u$
vT
vx

¼ a$
v2T
vy2

; (1)

u$
vc

vx
¼ D$

v2c

vy2
: (2)

The major simplifications of this approach are:

Nomenclature

Dimensionless numbers

Le Lewis number (Le ¼ a/D)eSt modified Stefan number ð eSt ¼ cs$DT=ðDhabs$DcÞÞ

Greek letters

a, b eigenvalues

D difference

d film thickness [m]

h dimensionless film thickness

g dimensionless mass fraction

l thermal conductivity [W m�1 K�1]

r density [kg m�3]

Q dimensionless temperature (Q¼ (T� TW)/(Teq� T0))

Q* dimensionless temperature (Q*¼ (T� T0)/(Teq� T0))

x normalized flow coordinate

Latin letters

a thermal diffusivity [m2 s�1]

A, B, C constants

c mass fraction (absorbate) [kg kg�1]

c specific heat capacity [kJ kg�1 K�1]

D mass diffusivity [m2 s�1]

i imaginary unit

n index

T temperature [K]

u streamwise film velocity [m s�1]

x streamwise direction [m]

y transverse direction to film flow [m]

z complex Laplace variable

Sub-/superscripts/symbols

0 inlet values, zero eigenvalue

ð Þ mean value

abs absorption

eq equilibrium (at inlet condition)

i interface

n index

s solution

st short term

W wall
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